【分布式】小白看Ring算法 - 03

news2024/9/25 23:18:51

相关系列

【分布式】NCCL部署与测试 - 01
【分布式】入门级NCCL多机并行实践 - 02
【分布式】小白看Ring算法 - 03
【分布式】大模型分布式训练入门与实践 - 04

概述

NCCL(NVIDIA Collective Communications Library)是由NVIDIA开发的一种用于多GPU间通信的库。NCCL的RING算法是NCCL库中的一种通信算法,用于在多个GPU之间进行环形通信。

RING算法的基本思想是将多个GPU连接成一个环形结构,每个GPU与相邻的两个GPU进行通信。数据沿着环形结构传递,直到到达发送方的位置。这样的环形结构可以有效地利用GPU之间的带宽,提高通信的效率。

RING算法的步骤如下:

数据拷贝
数据沿着环形路径传递
传输完成
进行下一轮通信/结束通信过程
初始化
通信缓冲区
等待
接收方

Scatter-Reduce

以Scatter-Reduce为例,假设有4张GPU,RANK_NUM=4。
则需要根据RANK_NUM把每张CPU划分为4个chunk。
为什么要这么划分?

在 NCCL 中,划分 chunk 的数量与 GPU 的数量相关联,这是因为 chunk 的目的是将大的消息划分为多个小的数据块,以便并行处理和降低通信的延迟。这种划分通常会基于 GPU 的数量,以确保每个 GPU 可以处理到一部分数据块,从而提高整体的通信效率。

  1. 并行性: 划分 chunk 可以增加通信的并行性。每个 GPU 处理自己的数据块,不同的 GPU 可以并行地执行通信操作,从而提高整体的吞吐量。
  2. 减少延迟: 较小的数据块通常可以更快地传输,因此通过划分 chunk,可以减少每个通信操作的延迟。这对于一些对通信延迟敏感的应用程序是至关重要的。
  3. 资源分配: NCCL 可能会根据 GPU 的数量来分配适当的资源,例如内存等。通过划分 chunk,可以更好地管理这些资源。
  4. Load Balancing: 均衡负载是分布式系统中的一个关键问题。通过根据 GPU 的数量划分 chunk,可以更容易地实现负载均衡,确保每个 GPU 处理的工作量相对均匀。

划分了chunk以后,我们一次RING的通路将会走通4块GPU,每次只传输一块chunk的数据。这样需要走很多次通路才能把所有数据传输完。
假如 ringIx=0,第一次循环到第三次循环时:
在这里插入图片描述

我们将绿色视为这次循环需要传输的数据。
数据ABCD在不同的GPU中流通。
最终达到以下情况,scatter-reduce就完成了:
在这里插入图片描述
将图中蓝色部分输出,就完成了一次ring算法下的Scatter-Reduce。

当然,如果要做All-Reduce,此时不需要继续按照原来的规则计算类,理论上只需要再算一次All-Gather,就能把蓝色的块分发给其他几块卡。All-Reduce的相关讲解网络上很多。此处就不讲了。

NCCL代码流程

1
1
1
1
2
2
2
2
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
8
8
9
9
9
9
10
10
10
10
11
11
11
11
12
12
12
12
13
13
13
13
rank0:fillInfo
bootstrap AllGather
rank1:fillInfo
rank2:fillInfo
rank3:fillInfo
rank0:getSystem
rank1:getSystem
rank2:getSystem
rank3:getSystem
rank0:computePath
rank1:computePath
rank2:computePath
rank3:computePath
rank0:search channel
rank1:search channel
rank2:search channel
rank3:search channel
bootstrap AllGather
rank0:connect
rank1:connect
rank2:connect
rank3:connect
rank0:setupChannel
rank1:setupChannel
rank2:setupChannel
rank3:setupChannel
rank0:p2pSetup
rank1:p2pSetup
rank2:p2pSetup
rank3:p2pSetup
rank0:tuneModel
rank1:tuneModel
rank2:tuneModel
rank3:tuneModel
rank0:p2pChannel
rank1:p2pChannel
rank2:p2pChannel
rank3:p2pChannel
bootstrap IntraNodeBarrier
rank0:NetProxy
rank1:NetProxy
rank2:NetProxy
rank3:NetProxy

fillInfo:
这段代码在init.cc中

static ncclResult_t fillInfo(struct ncclComm* comm, struct ncclPeerInfo* info, uint64_t commHash) {
  info->rank = comm->rank;
  CUDACHECK(cudaGetDevice(&info->cudaDev));
  info->hostHash=getHostHash()+commHash;
  info->pidHash=getPidHash()+commHash;

  // Get the device MAJOR:MINOR of /dev/shm so we can use that
  // information to decide whether we can use SHM for inter-process
  // communication in a container environment
  struct stat statbuf;
  SYSCHECK(stat("/dev/shm", &statbuf), "stat");
  info->shmDev = statbuf.st_dev;

  info->busId = comm->busId;

  NCCLCHECK(ncclGpuGdrSupport(&info->gdrSupport));
  return ncclSuccess;
}

这段代码的目的是为了获取和存储与通信相关的信息,以便在NCCL通信中使用。其中包括设备标识、主机哈希、进程ID哈希、共享内存设备标识、总线ID以及对GDR的支持情况等。

在initTransportsRank中,搜索完信息并作第一次AllGather, 收集所有通信节点的信息。
然后再为通信组分配额外的内存,以存储每个通信节点的信息(包括一个额外的用于表示CollNet root的位置)。
遍历节点和复制信息时,需要检查是否存在相同主机哈希和总线ID的重复GPU。如果是,发出警告并返回ncclInvalidUsage错误。

后面的一系列过程就是计算路径,然后这里涉及一些搜索算法,通常会将BFS搜索到的路径都存在一个位置,选择更优的路径。
搜索时也会根据实际情况判断选择ring算法或者tree算法。
搜索内容可能是无穷的,因此NCCL设置了一个超时时间,超过该时间则终端搜索。
完成路径的计算后,再做一次AllGather。

来到scatter-reduce的实现部分:

		size_t realChunkSize;
      if (Proto::Id == NCCL_PROTO_SIMPLE) {
        realChunkSize = min(chunkSize, divUp(size-gridOffset, nChannels));
        realChunkSize = roundUp(realChunkSize, (nthreads-WARP_SIZE)*sizeof(uint64_t)/sizeof(T));
      }
      else if (Proto::Id == NCCL_PROTO_LL)
        realChunkSize = size-gridOffset < loopSize ? args->coll.lastChunkSize : chunkSize;
      else if (Proto::Id == NCCL_PROTO_LL128)
        realChunkSize = min(divUp(size-gridOffset, nChannels*minChunkSizeLL128)*minChunkSizeLL128, chunkSize);
      realChunkSize = int(realChunkSize);

      ssize_t chunkOffset = gridOffset + bid*int(realChunkSize);

这里涉及了NCCL协议的通信模式:
一共有三种,分别是NCCL_PROTO_SIMPLE、NCCL_PROTO_LL和NCCL_PROTO_LL128。

NCCL_PROTO_SIMPLE:

描述: 使用简单的通信协议。
差异点: 计算realChunkSize时,采用了一些特殊的逻辑,其中min(chunkSize, divUp(size-gridOffset, nChannels))用于确定实际的块大小,并通过roundUp调整为合适的大小。这可能涉及到性能和资源的考虑,以及对通信模式的调整。

NCCL_PROTO_LL:

描述: 使用连续链表(Linked List,LL)的通信协议。
差异点: 在计算realChunkSize时,首先检查size-gridOffset < loopSize条件,如果为真,则使用args->coll.lastChunkSize,否则使用默认的chunkSize。这可能与LL协议的特性有关,具体考虑了循环的情况。
NCCL_PROTO_LL128:

描述: 使用连续链表的通信协议,每次传输128字节。
差异点: 计算realChunkSize时,采用了min(divUp(size-gridOffset, nChannels*minChunkSizeLL128)*minChunkSizeLL128, chunkSize)的逻辑。这考虑了128字节的限制,以及对通信块大小的一些限制。
总体来说,这三种协议模式的区别主要体现在计算realChunkSize的逻辑上,这可能受到性能、资源利用、通信模式等方面的不同考虑。具体选择哪种协议模式通常取决于系统的特性和应用场景的需求。

Protocol ModeDescriptionCalculation of realChunkSize
NCCL_PROTO_SIMPLEUses a simple communication protocol.realChunkSize = roundUp(min(chunkSize, divUp(size-gridOffset, nChannels)), (nthreads-WARP_SIZE)*sizeof(uint64_t)/sizeof(T))
NCCL_PROTO_LLUses a linked list (LL) communication protocol.realChunkSize = size-gridOffset < loopSize ? args->coll.lastChunkSize : chunkSize
NCCL_PROTO_LL128Uses a linked list (LL) communication protocol, with each transfer involving 128 bytes.realChunkSize = min(divUp(size-gridOffset, nChannels*minChunkSizeLL128)*minChunkSizeLL128, chunkSize)

最后是正式计算部分:

 /////////////// begin ReduceScatter steps ///////////////
      ssize_t offset;
      int nelem = min(realChunkSize, size-chunkOffset);
      int rankDest;

      // step 0: push data to next GPU
      rankDest = ringRanks[nranks-1];
      offset = chunkOffset + rankDest * size;
      prims.send(offset, nelem);

      // k-2 steps: reduce and copy to next GPU
      for (int j=2; j<nranks; ++j) {
        rankDest = ringRanks[nranks-j];
        offset = chunkOffset + rankDest * size;
        prims.recvReduceSend(offset, nelem);
      }

      // step k-1: reduce this buffer and data, which will produce the final result
      rankDest = ringRanks[0];
      offset = chunkOffset + rankDest * size;
      prims.recvReduceCopy(offset, chunkOffset, nelem, /*postOp=*/true);

ssize_t offset; int nelem = min(realChunkSize, size-chunkOffset); int rankDest;:

offset 是一个偏移量变量,用于指定数据在通信缓冲区中的位置。
nelem 表示每次操作的元素个数,取 realChunkSize 和 size-chunkOffset 的较小值。
rankDest 是目标GPU的排名。

第一步:将数据推送到下一个GPU。
计算目标GPU的排名 rankDest 和在通信缓冲区中的偏移量 offset。
调用 prims.send 函数,将数据从当前GPU发送到目标GPU。
// k-2 steps: reduce and copy to next GPU:

第2到第k-1步:
将数据在环形路径上经过各个GPU节点,依次进行Reduce操作,并将结果复制到下一个GPU。
通过循环,依次计算目标GPU的排名 rankDest 和在通信缓冲区中的偏移量 offset。
调用 prims.recvReduceSend 函数,接收数据并执行Reduce操作,然后将结果发送到下一个GPU。

第k-1步:
将最后一个GPU的数据进行Reduce操作,得到最终的结果。
计算目标GPU的排名 rankDest 和在通信缓冲区中的偏移量 offset。
调用 prims.recvReduceCopy 函数,接收数据并执行Reduce操作,然后将结果复制到指定的位置,最终产生最终的ReduceScatter结果。

在实际运行中,我们在host端的代码只是规定计算流,当这些定义好的原子操作加入到stream中去以后,就由固定的流来分配实际运行的情况了。

加入Barria,在本地(intra-node)执行一个屏障操作,确保同一节点内的所有GPU都达到了同步点。

 // Compute time models for algorithm and protocol combinations
  NCCLCHECK(ncclTopoTuneModel(comm, minCompCap, maxCompCap, &treeGraph, &ringGraph, &collNetGraph));

  // Compute nChannels per peer for p2p
  NCCLCHECK(ncclTopoComputeP2pChannels(comm));

  if (ncclParamNvbPreconnect()) {
    // Connect p2p when using NVB path
    int nvbNpeers;
    int* nvbPeers;
    NCCLCHECK(ncclTopoGetNvbGpus(comm->topo, comm->rank, &nvbNpeers, &nvbPeers));
    for (int r=0; r<nvbNpeers; r++) {
      int peer = nvbPeers[r];
      int delta = (comm->nRanks + (comm->rank-peer)) % comm->nRanks;
      for (int c=0; c<comm->p2pnChannelsPerPeer; c++) {
        int channelId = (delta+comm->p2pChannels[c]) % comm->p2pnChannels;
        if (comm->channels[channelId].peers[peer].recv[0].connected == 0) { // P2P uses only 1 connector
          comm->connectRecv[peer] |= (1<<channelId);
        }
      }
      delta = (comm->nRanks - (comm->rank-peer)) % comm->nRanks;
      for (int c=0; c<comm->p2pnChannelsPerPeer; c++) {
        int channelId = (delta+comm->p2pChannels[c]) % comm->p2pnChannels;
        if (comm->channels[channelId].peers[peer].send[0].connected == 0) { // P2P uses only 1 connector
          comm->connectSend[peer] |= (1<<channelId);
        }
      }
    }
    NCCLCHECK(ncclTransportP2pSetup(comm, NULL, 0));
    free(nvbPeers);
  }

  NCCLCHECK(ncclCommSetIntraProc(comm, intraProcRank, intraProcRanks, intraProcRank0Comm));

  /* Local intra-node barrier */
  NCCLCHECK(bootstrapBarrier(comm->bootstrap, comm->intraNodeGlobalRanks, intraNodeRank, intraNodeRanks, (int)intraNodeRank0pidHash));

  if (comm->nNodes) NCCLCHECK(ncclProxyCreate(comm));

以上就是整个scatter-reduce的流程。

相关系列

【分布式】NCCL部署与测试 - 01
【分布式】入门级NCCL多机并行实践 - 02
【分布式】小白看Ring算法 - 03
【分布式】大模型分布式训练入门与实践 - 04

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1243459.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SQL进阶学习

1.[NISACTF 2022]join-us sql报错注入和联合注入 过滤&#xff1a; as IF rand() LEFT by updatesubstring handler union floor benchmark COLUMN UPDATE & sys.schema_auto_increment_columns && 11 database case AND right CAST FLOOR left updatexml DATABA…

CLion安装与配置教程

目录 一、下载并安装CLion1、下载1、官网&#xff1a;2、注意&#xff1a; 2、安装1、下载完成后&#xff0c;直接点击安装包安装&#xff0c;即可。2、开始安装&#xff0c;然后下一步3、可以在此处自定义地址&#xff0c;然后下一步4、根据系统版本选择&#xff0c;然后下一步…

Linux:虚拟机安装Ubuntu系统

一、下载Ubuntu 地址&#xff1a;https://cn.ubuntu.com/download/desktop 二、安装 以上配置完成后&#xff0c;点击完成按钮&#xff0c;接下来就是一段较长时间的等待安装过程。 安装完成后&#xff0c;还有一些系统性配置。 系统配置非常简单&#xff0c;全部next即可。…

开源 GPU池化软件 | (AI人工智能训练平台、AI人工智能推理平台)

GPU池化软件 | (AI人工智能训练平台、AI人工智能推理平台) 讨论群v:&#x1f680;18601938676 一、AI人工智能开发-------------面临的问题和挑战 1. GPU管理难题 1.1 资源管理难&#xff1a;算力资源昂贵&#xff0c;但是缺乏有效管理&#xff0c;闲置情况严重。 1.2 用户…

【uniapp】uniapp开发小程序定制uni-collapse(折叠面板)

需求 最近在做小程序&#xff0c;有一个类似折叠面板的ui控件&#xff0c;效果大概是这样 代码 因为项目使用的是uniapp&#xff0c;所以打算去找uniapp的扩展组件&#xff0c;果然给我找到了这个叫uni-collapse的组件&#xff08;链接&#xff1a;uni-collapse&#xff09…

Django 入门学习总结4

视图是Django应用程序在Python语言中提供特定的方法并对应于有特定的模板的网页。网页的页面通过视图的方式进行跳转。 在投票系统中&#xff0c;有四个视图&#xff1a; 首页视图&#xff0c;显示最新的问题列表。细节视图&#xff0c;显示问题文本&#xff0c;通过表单可以…

【标注数据】labelme的安装与使用

这里写目录标题 下载标数据 下载 标数据 打开自动保存 创建矩形

FreeRTOS的并行与并发思考

FreeRTOS的任务触发是由滴答时钟触发SysTick中断来触发调度器执行或阻塞或挂起和切换任务的。 首先是任务的并发能力&#xff0c;FreeRTOS的任务执行是基于全抢占调度机制&#xff0c;任务优先级按在就绪列表中由高到低排布&#xff0c;系统首先执行最高优先级任务&#xff0c;…

【element优化经验】怎么让element-ui中表单多语言切换排版不乱

目录 前言&#xff1a; 痛点&#xff1a; 1.左对齐&#xff0c;右对齐在中文和外语情况下字数不同&#xff0c;固定宽度会使名称换行&#xff0c;不在整行对齐&#xff0c;影响美观。 2.如果名称和输入框不在一行&#xff0c;会使页面越来越长 3.label-width值给变量&#…

Switch的使用及其注意事项

注意第五点要看清&#xff0c;case执行完后匹配没有成功&#xff0c;如过有Default&#xff0c;将会执行Default&#xff0c;如果有case在Default之后&#xff0c;而且Default没有break语句&#xff0c;那么将会继续执行case的语句&#xff0c;此时case中的常量表达式只起语句标…

鸿蒙(HarmonyOS)应用开发——ArkTs学习准备

介绍 前面我们已经介绍了&#xff0c;如何安装HarmonyOS的IDE ,那么现在我们来介绍一下。HarmonyOS 开发的语言——ArkTs. ArkTS 是HarmonyOS的开发语言&#xff0c;他是typescript 的扩展&#xff0c;而typesrcipt是javascript的超集&#xff0c;如果你不太熟悉typescript语法…

fork介绍,返回值问题,写时拷贝,进程切换,子进程开始执行的位置,子进程的用途

目录 fork 介绍 fork的返回值问题 介绍 fork()时,系统要做什么 数据是否要独立 如果共享的话,就会出现问题! 写时拷贝 引入 介绍 举例(fork返回值) fork返回的值是什么 创建失败的原因 子进程执行位置从哪里开始 引入 进程切换 子进程执行的位置 子进程的…

SAP-部分字段变更

在SAP中部分字段是可以自行调整的&#xff0c;例如下图 这个字段是客户组1&#xff0c;已经被改成一级经理&#xff0c;现在来操作改回客户组1 首先选择字段点击F1-技术信息-数据元素&#xff08;双击&#xff09; . . 保存&#xff0c;返回&#xff0c;激活&#xff0c;返…

计算方法 期末总结

思维导图 绪论 算法的性质&#xff1a; 有穷性、确切性、有输入输出、可行性 算法的描述方法&#xff1a; 自然语言、伪代码、流程图、N-S流程图 算法设计思想&#xff1a; 化大为小的缩减技术&#xff1a;二分法化难为易的校正技术&#xff1a;开方法化粗为精的松弛技术&a…

听GPT 讲Rust源代码--src/tools(2)

题图来自AI生成 File: rust/src/tools/rust-installer/src/util.rs 在Rust源代码中&#xff0c;rust/src/tools/rust-installer/src/util.rs文件是安装程序的一个辅助文件&#xff0c;它提供了一些实用函数和结构体来处理安装过程中需要的一些操作。 这个文件中定义了几个结构体…

本地websocket服务端暴露至公网访问【cpolar内网穿透】

本地websocket服务端暴露至公网访问【cpolar内网穿透】 文章目录 本地websocket服务端暴露至公网访问【cpolar内网穿透】1. Java 服务端demo环境2. 在pom文件引入第三包封装的netty框架maven坐标3. 创建服务端,以接口模式调用,方便外部调用4. 启动服务,出现以下信息表示启动成功…

香港科技大学广州|先进材料学域博士招生宣讲会—华中科技大学大学专场!!!(暨全额奖学金政策)

“跨学科融合创新&#xff0c;引领新兴与未来行业的突破与发展——先进材料学域” 世界一流的新型可持续材料创新研究 夯实的先进材料领域国际学术影响力 教授亲临现场&#xff0c;面对面答疑解惑助攻申请&#xff01; 一经录取&#xff0c;享全额奖学金1.5万/月&#xff01; …

力扣:178. 分数排名(Python3)

题目&#xff1a; 表: Scores ---------------------- | Column Name | Type | ---------------------- | id | int | | score | decimal | ---------------------- 在 SQL 中&#xff0c;id 是该表的主键。 该表的每一行都包含了一场比赛的分数。Score …