一分钟搞定Netty 三大组件,如果搞不定,再看3遍

news2024/10/6 16:18:14

1. 三大组件简介

Channel 与 Buffer

Java NIO 系统的核心在于:通道 (Channel) 和缓冲区 (Buffer)。通道表示打开到 IO 设备 (例如:文件、套接字) 的连接。若需要使用 NIO 系统,需要获取用于连接 IO 设备的通道 以及用于容纳数据的缓冲区。然后操作缓冲区,对数据进行处理

简而言之,通道负责传输,缓冲区负责存储

常见的 Channel 有以下四种,其中 FileChannel 主要用于文件传输,其余三种用于网络通信

  • FileChannel
  • DatagramChannel
  • SocketChannel
  • ServerSocketChannel

Buffer 有以下几种,其中使用较多的是 ByteBuffer

  • ByteBuffer

    • MappedByteBuffer
    • DirectByteBuffer
    • HeapByteBuffer
  • ShortBuffer

  • IntBuffer

  • LongBuffer

  • FloatBuffer

  • DoubleBuffer

  • CharBuffer

file

1、Selector

在使用 Selector 之前,处理 socket 连接还有以下两种方法

使用多线程技术

为每个连接分别开辟一个线程,分别去处理对应的 socket 连接

file

这种方法存在以下几个问题

  • 内存占用高
    • 每个线程都需要占用一定的内存,当连接较多时,会开辟大量线程,导致占用大量内存
  • 线程上下文切换成本高
  • 只适合连接数少的场景
    • 连接数过多,会导致创建很多线程,从而出现问题

使用线程池技术

使用线程池,让线程池中的线程去处理连接

file 这种方法存在以下几个问题

  • 阻塞模式下,线程仅能处理一个连接
    • 线程池中的线程获取任务(task)后,只有当其执行完任务之后(断开连接后),才会去获取并执行下一个任务
    • 若 socke 连接一直未断开,则其对应的线程无法处理其他 socke 连接
  • 仅适合短连接场景
    • 短连接即建立连接发送请求并响应后就立即断开,使得线程池中的线程可以快速处理其他连接

使用选择器

selector 的作用就是配合一个线程来管理多个 channel(fileChannel 因为是阻塞式的,所以无法使用 selector),,获取这些 channel 上发生的事件,这些 channel 工作在非阻塞模式下,当一个 channel 中没有执行任务时,可以去执行其他channel 中的任务。适合连接数多,但流量较少的场景

file

若事件未就绪,调用 selector 的 select () 方法会阻塞线程,直到 channel 发生了就绪事件。这些事件就绪后,select 方法就会返回这些事件交给 thread 来处理

2、ByteBuffer

使用案例

使用方式
  • 向 buffer 写入数据,例如调用 channel.read (buffer)

  • 调用 flip () 切换至

    读模式

    • flip 会使得 buffer 中的 limit 变为 position,position 变为 0
  • 从 buffer 读取数据,例如调用 buffer.get ()

  • 调用 clear () 或者 compact () 切换至

    写模式

    • 调用 clear () 方法时 position=0,limit 变为 capacity
    • 调用 compact () 方法时,会将缓冲区中的未读数据压缩到缓冲区前面
  • 重复以上步骤

使用 ByteBuffer 读取文件中的内容

public class TestByteBuffer {
     public static void main(String[] args) {
        try (FileChannel channel = new FileInputStream("stu.txt").getChannel()){
            //给缓冲区 分配空间
            ByteBuffer buffer = ByteBuffer.allocate(10);
            int read = 0 ;
            StringBuilder builder = new StringBuilder();
            while ((read =channel.read(buffer))>0){
                //切换成 读模式 limit = position; position=0
                buffer.flip();
                while (buffer.hasRemaining()){
                    builder.append((char)buffer.get());
                }
                //清空字节数组 切换成 写模式 position=0 ;limit = capacity
                buffer.clear();
            }
            System.out.println(builder.toString());
        } catch (Exception e) {
            e.printStackTrace();
        } finally {

        }
    }
}

打印结果:

0123456789abcdef

核心属性

字节缓冲区的父类 Buffer 中有几个核心属性,如下

// Invariants: mark <= position <= limit <= capacity
private int mark = -1;
private int position = 0;
private int limit;
private int capacity;
  • capacity:缓冲区的容量。通过构造函数赋予,一旦设置,无法更改
  • limit:缓冲区的界限。位于 limit 后的数据不可读写。缓冲区的限制不能为负,并且 不能大于其容量
  • position: 下一个读写位置的索引(类似 PC)。缓冲区的位置不能为负,并且不能大于 limit
  • mark:记录当前 position 的值。position 被改变后,可以通过调用 reset () 方法恢复到 mark 的位置。

以上四个属性必须满足以下要求

mark <= position <= limit <= capacity

核心方法

put () 方法
  • put () 方法可以将一个数据放入到缓冲区中。
  • 进行该操作后,postition 的值会 +1,指向下一个可以放入的位置。capacity = limit ,为缓冲区容量的值。

file

flip () 方法
  • flip () 方法会 切换对缓冲区的操作模式 ,由 写 -> 读 / 读 -> 写
  • 进行该操作后
    • 如果是 写模式 -> 读模式,position = 0 , limit 指向最后一个元素的下一个位置,capacity 不变
    • 如果是读 -> 写 ,则恢复为 put () 方法中的值

file

get () 方法
  • get () 方法会读取缓冲区中的一个值
  • 进行该操作后,position 会 +1 ,如果超过了 limit 则会抛出异常
  • 注意:get (i) 方法不会改变 position 的值

file

rewind () 方法
  • 该方法 只能在读模式下使用
  • rewind () 方法后,会恢复 position、limit 和 capacity 的值,变为进行 get () 前的值

file

clear () 方法
  • clear () 方法会将缓冲区中的各个属性恢复为最初的状态,position = 0, capacity = limit
  • 此时缓冲区的数据依然存在,处于 “被遗忘” 状态,下次进行写操作时会覆盖这些数据

file

mark () 和 reset () 方法
  • mark () 方法会将 postion 的值保存到 mark 属性中
  • reset () 方法会将 position 的值改为 mark 中保存的值
compact () 方法

此方法为 ByteBuffer 的方法,而不是 Buffer 的方法

  • compact 会把未读完的数据向前压缩,然后切换到写模式
  • 数据前移后,原位置的值并未清零,写时会覆盖之前的值

file

clear() VS compact()

clear 只是对 position、limit、mark 进行重置,而 compact 在对 position 进行设置,以及 limit、mark 进行重置的同时,还涉及到数据在内存中拷贝(会调用 array)。所以 compact 比 clear 更耗性能。但 compact 能保存你未读取的数据,将新数据追加到为读取的数据之后;而 clear 则不行,若你调用了 clear,则未读取的数据就无法再读取到了

所以需要根据情况来判断使用哪种方法进行模式切换

方法调用及演示

ByteBuffer 调试工具类

需要先导入 netty 依赖

<dependency>
  <groupId>io.netty</groupId>
  <artifactId>netty-all</artifactId>
  <version>4.1.51.Final</version>
</dependency>
import java.nio.ByteBuffer;

import io.netty.util.internal.MathUtil;
import io.netty.util.internal.StringUtil;
import io.netty.util.internal.MathUtil.*;


public class ByteBufferUtil {
    private static final char[] BYTE2CHAR = new char[256];
    private static final char[] HEXDUMP_TABLE = new char[256 * 4];
    private static final String[] HEXPADDING = new String[16];
    private static final String[] HEXDUMP_ROWPREFIXES = new String[65536 >>> 4];
    private static final String[] BYTE2HEX = new String[256];
    private static final String[] BYTEPADDING = new String[16];

    static {
        final char[] DIGITS = "0123456789abcdef".toCharArray();
        for (int i = 0; i < 256; i++) {
            HEXDUMP_TABLE[i << 1] = DIGITS[i >>> 4 & 0x0F];
            HEXDUMP_TABLE[(i << 1) + 1] = DIGITS[i & 0x0F];
        }

        int i;

        // Generate the lookup table for hex dump paddings
        for (i = 0; i < HEXPADDING.length; i++) {
            int padding = HEXPADDING.length - i;
            StringBuilder buf = new StringBuilder(padding * 3);
            for (int j = 0; j < padding; j++) {
                buf.append("   ");
            }
            HEXPADDING[i] = buf.toString();
        }

        // Generate the lookup table for the start-offset header in each row (up to 64KiB).
        for (i = 0; i < HEXDUMP_ROWPREFIXES.length; i++) {
            StringBuilder buf = new StringBuilder(12);
            buf.append(StringUtil.NEWLINE);
            buf.append(Long.toHexString(i << 4 & 0xFFFFFFFFL | 0x100000000L));
            buf.setCharAt(buf.length() - 9, '|');
            buf.append('|');
            HEXDUMP_ROWPREFIXES[i] = buf.toString();
        }

        // Generate the lookup table for byte-to-hex-dump conversion
        for (i = 0; i < BYTE2HEX.length; i++) {
            BYTE2HEX[i] = ' ' + StringUtil.byteToHexStringPadded(i);
        }

        // Generate the lookup table for byte dump paddings
        for (i = 0; i < BYTEPADDING.length; i++) {
            int padding = BYTEPADDING.length - i;
            StringBuilder buf = new StringBuilder(padding);
            for (int j = 0; j < padding; j++) {
                buf.append(' ');
            }
            BYTEPADDING[i] = buf.toString();
        }

        // Generate the lookup table for byte-to-char conversion
        for (i = 0; i < BYTE2CHAR.length; i++) {
            if (i <= 0x1f || i >= 0x7f) {
                BYTE2CHAR[i] = '.';
            } else {
                BYTE2CHAR[i] = (char) i;
            }
        }
    }

    /**
     * 打印所有内容
     * @param buffer
     */
    public static void debugAll(ByteBuffer buffer) {
        int oldlimit = buffer.limit();
        buffer.limit(buffer.capacity());
        StringBuilder origin = new StringBuilder(256);
        appendPrettyHexDump(origin, buffer, 0, buffer.capacity());
        System.out.println("+--------+-------------------- all ------------------------+----------------+");
        System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), oldlimit);
        System.out.println(origin);
        buffer.limit(oldlimit);
    }

    /**
     * 打印可读取内容
     * @param buffer
     */
    public static void debugRead(ByteBuffer buffer) {
        StringBuilder builder = new StringBuilder(256);
        appendPrettyHexDump(builder, buffer, buffer.position(), buffer.limit() - buffer.position());
        System.out.println("+--------+-------------------- read -----------------------+----------------+");
        System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), buffer.limit());
        System.out.println(builder);
    }

    private static void appendPrettyHexDump(StringBuilder dump, ByteBuffer buf, int offset, int length) {
        if (MathUtil.isOutOfBounds(offset, length, buf.capacity())) {
            throw new IndexOutOfBoundsException(
                    "expected: " + "0 <= offset(" + offset + ") <= offset + length(" + length
                            + ") <= " + "buf.capacity(" + buf.capacity() + ')');
        }
        if (length == 0) {
            return;
        }
        dump.append(
                "         +-------------------------------------------------+" +
                        StringUtil.NEWLINE + "         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |" +
                        StringUtil.NEWLINE + "+--------+-------------------------------------------------+----------------+");

        final int startIndex = offset;
        final int fullRows = length >>> 4;
        final int remainder = length & 0xF;

        // Dump the rows which have 16 bytes.
        for (int row = 0; row < fullRows; row++) {
            int rowStartIndex = (row << 4) + startIndex;

            // Per-row prefix.
            appendHexDumpRowPrefix(dump, row, rowStartIndex);

            // Hex dump
            int rowEndIndex = rowStartIndex + 16;
            for (int j = rowStartIndex; j < rowEndIndex; j++) {
                dump.append(BYTE2HEX[getUnsignedByte(buf, j)]);
            }
            dump.append(" |");

            // ASCII dump
            for (int j = rowStartIndex; j < rowEndIndex; j++) {
                dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]);
            }
            dump.append('|');
        }

        // Dump the last row which has less than 16 bytes.
        if (remainder != 0) {
            int rowStartIndex = (fullRows << 4) + startIndex;
            appendHexDumpRowPrefix(dump, fullRows, rowStartIndex);

            // Hex dump
            int rowEndIndex = rowStartIndex + remainder;
            for (int j = rowStartIndex; j < rowEndIndex; j++) {
                dump.append(BYTE2HEX[getUnsignedByte(buf, j)]);
            }
            dump.append(HEXPADDING[remainder]);
            dump.append(" |");

            // Ascii dump
            for (int j = rowStartIndex; j < rowEndIndex; j++) {
                dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]);
            }
            dump.append(BYTEPADDING[remainder]);
            dump.append('|');
        }

        dump.append(StringUtil.NEWLINE +
                "+--------+-------------------------------------------------+----------------+");
    }

    private static void appendHexDumpRowPrefix(StringBuilder dump, int row, int rowStartIndex) {
        if (row < HEXDUMP_ROWPREFIXES.length) {
            dump.append(HEXDUMP_ROWPREFIXES[row]);
        } else {
            dump.append(StringUtil.NEWLINE);
            dump.append(Long.toHexString(rowStartIndex & 0xFFFFFFFFL | 0x100000000L));
            dump.setCharAt(dump.length() - 9, '|');
            dump.append('|');
        }
    }

    public static short getUnsignedByte(ByteBuffer buffer, int index) {
        return (short) (buffer.get(index) & 0xFF);
    }
}
调用 ByteBuffer 的方法
public class TestByteBuffer {
    public static void main(String[] args) {
        ByteBuffer buffer = ByteBuffer.allocate(10);
        // 向buffer中写入1个字节的数据
        buffer.put((byte)97);
        // 使用工具类,查看buffer状态
        ByteBufferUtil.debugAll(buffer);

        // 向buffer中写入4个字节的数据
        buffer.put(new byte[]{98, 99, 100, 101});
        ByteBufferUtil.debugAll(buffer);

        // 获取数据
        buffer.flip();
        ByteBufferUtil.debugAll(buffer);
        System.out.println(buffer.get());
        System.out.println(buffer.get());
        ByteBufferUtil.debugAll(buffer);

        // 使用compact切换模式
        buffer.compact();
        ByteBufferUtil.debugAll(buffer);

        // 再次写入
        buffer.put((byte)102);
        buffer.put((byte)103);
        ByteBufferUtil.debugAll(buffer);
    }
}

运行结果

// 向缓冲区写入了一个字节的数据,此时postition为1
+--------+-------------------- all ------------------------+----------------+
position: [1], limit: [10]
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 00 00 00 00 00 00 00 00 00                   |a.........      |
+--------+-------------------------------------------------+----------------+

// 向缓冲区写入四个字节的数据,此时position为5
+--------+-------------------- all ------------------------+----------------+
position: [5], limit: [10]
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 62 63 64 65 00 00 00 00 00                   |abcde.....      |
+--------+-------------------------------------------------+----------------+

// 调用flip切换模式,此时position为0,表示从第0个数据开始读取
+--------+-------------------- all ------------------------+----------------+
position: [0], limit: [5]
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 62 63 64 65 00 00 00 00 00                   |abcde.....      |
+--------+-------------------------------------------------+----------------+
// 读取两个字节的数据             
97
98

// position变为2             
+--------+-------------------- all ------------------------+----------------+
position: [2], limit: [5]
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 62 63 64 65 00 00 00 00 00                   |abcde.....      |
+--------+-------------------------------------------------+----------------+

// 调用compact切换模式,此时position及其后面的数据被压缩到ByteBuffer前面去了
// 此时position为3,会覆盖之前的数据             
+--------+-------------------- all ------------------------+----------------+
position: [3], limit: [10]
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 63 64 65 64 65 00 00 00 00 00                   |cdede.....      |
+--------+-------------------------------------------------+----------------+

// 再次写入两个字节的数据,之前的 0x64 0x65 被覆盖         
+--------+-------------------- all ------------------------+----------------+
position: [5], limit: [10]
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 63 64 65 66 67 00 00 00 00 00                   |cdefg.....      |
+--------+-------------------------------------------------+----------------+

字符串与 ByteBuffer 的相互转换

方法一

编码:字符串调用 getByte 方法获得 byte 数组,将 byte 数组放入 ByteBuffer 中

解码:先调用 ByteBuffer 的 flip 方法,然后通过 StandardCharsets 的 decoder 方法解码

public class Translate {
    public static void main(String[] args) {
        // 准备两个字符串
        String str1 = "hello";
        String str2 = "";


        ByteBuffer buffer1 = ByteBuffer.allocate(16);
        // 通过字符串的getByte方法获得字节数组,放入缓冲区中
        buffer1.put(str1.getBytes());
        ByteBufferUtil.debugAll(buffer1);

        // 将缓冲区中的数据转化为字符串
        // 切换模式
        buffer1.flip();

        // 通过StandardCharsets解码,获得CharBuffer,再通过toString获得字符串
        str2 = StandardCharsets.UTF_8.decode(buffer1).toString();
        System.out.println(str2);
        ByteBufferUtil.debugAll(buffer1);
    }
}

运行结果

+--------+-------------------- all ------------------------+----------------+
position: [5], limit: [16]
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f 00 00 00 00 00 00 00 00 00 00 00 |hello...........|
+--------+-------------------------------------------------+----------------+
hello
+--------+-------------------- all ------------------------+----------------+
position: [5], limit: [5]
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f 00 00 00 00 00 00 00 00 00 00 00 |hello...........|
+--------+-------------------------------------------------+----------------+
方法二

编码:通过 StandardCharsets 的 encode 方法获得 ByteBuffer,此时获得的 ByteBuffer 为读模式,无需通过 flip 切换模式

解码:通过 StandardCharsets 的 decoder 方法解码

public class Translate {
    public static void main(String[] args) {
        // 准备两个字符串
        String str1 = "hello";
        String str2 = "";

        // 通过StandardCharsets的encode方法获得ByteBuffer
        // 此时获得的ByteBuffer为读模式,无需通过flip切换模式
        ByteBuffer buffer1 = StandardCharsets.UTF_8.encode(str1);
        ByteBufferUtil.debugAll(buffer1);

        // 将缓冲区中的数据转化为字符串
        // 通过StandardCharsets解码,获得CharBuffer,再通过toString获得字符串
        str2 = StandardCharsets.UTF_8.decode(buffer1).toString();
        System.out.println(str2);
        ByteBufferUtil.debugAll(buffer1);
    }
}

运行结果

+--------+-------------------- all ------------------------+----------------+
position: [0], limit: [5]
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f                                  |hello           |
+--------+-------------------------------------------------+----------------+
hello
+--------+-------------------- all ------------------------+----------------+
position: [5], limit: [5]
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f                                  |hello           |
+--------+-------------------------------------------------+----------------+
方法三

编码:字符串调用 getByte () 方法获得字节数组,将字节数组传给 ByteBuffer 的 wrap () 方法,通过该方法获得 ByteBuffer。同样无需调用 flip 方法切换为读模式

解码:通过 StandardCharsets 的 decoder 方法解码

public class Translate {
    public static void main(String[] args) {
        // 准备两个字符串
        String str1 = "hello";
        String str2 = "";

        // 通过StandardCharsets的encode方法获得ByteBuffer
        // 此时获得的ByteBuffer为读模式,无需通过flip切换模式
        ByteBuffer buffer1 = ByteBuffer.wrap(str1.getBytes());
        ByteBufferUtil.debugAll(buffer1);

        // 将缓冲区中的数据转化为字符串
        // 通过StandardCharsets解码,获得CharBuffer,再通过toString获得字符串
        str2 = StandardCharsets.UTF_8.decode(buffer1).toString();
        System.out.println(str2);
        ByteBufferUtil.debugAll(buffer1);
    }
}

运行结果

+--------+-------------------- all ------------------------+----------------+
position: [0], limit: [5]
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f                                  |hello           |
+--------+-------------------------------------------------+----------------+
hello
+--------+-------------------- all ------------------------+----------------+
position: [5], limit: [5]
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f                                  |hello           |
+--------+-------------------------------------------------+----------------+

粘包与半包

现象

网络上有多条数据发送给服务端,数据之间使用 \n 进行分隔 但由于某种原因这些数据在接收时,被进行了重新组合,例如原始数据有 3 条为

  • Hello,world\n
  • I’m Nyima\n
  • How are you?\n

变成了下面的两个 byteBuffer (粘包,半包)

  • Hello,world\nI’m Nyima\nHo
  • w are you?\n
出现原因

粘包

发送方 在发送数据时,并不是一条一条地发送数据,而是将数据整合在一起,当数据达到一定的数量后再一起发送。这就会导致多条信息被放在一个缓冲区中被一起发送出去

半包

接收方 的缓冲区的大小是有限的,当接收方的缓冲区满了以后,就需要将信息截断,等缓冲区空了以后再继续放入数据。这就会发生一段完整的数据最后被截断的现象

解决办法
  • 通过 get (index) 方法遍历 ByteBuffer,遇到分隔符时进行处理。

    注意

    :get (index) 不会改变 position 的值

    • 记录该段数据长度,以便于申请对应大小的缓冲区
    • 将缓冲区的数据通过 get () 方法写入到 target 中
  • 调用 compact 方法切换模式,因为缓冲区中可能还有未读的数据

public class ByteBufferDemo {
    public static void main(String[] args) {
        ByteBuffer buffer = ByteBuffer.allocate(32);
        // 模拟粘包+半包
        buffer.put("Hello,world\nI'm Nyima\nHo".getBytes());
        // 调用split函数处理
        split(buffer);
        buffer.put("w are you?\n".getBytes());
        split(buffer);
    }

    private static void split(ByteBuffer buffer) {
        // 切换为读模式
        buffer.flip();
        for(int i = 0; i < buffer.limit(); i++) {

            // 遍历寻找分隔符
            // get(i)不会移动position
            if (buffer.get(i) == '\n') {
                // 缓冲区长度
                int length = i+1-buffer.position();
                ByteBuffer target = ByteBuffer.allocate(length);
                // 将前面的内容写入target缓冲区
                for(int j = 0; j < length; j++) {
                    // 将buffer中的数据写入target中
                    target.put(buffer.get());
                }
                // 打印查看结果
                ByteBufferUtil.debugAll(target);
            }
        }
        // 切换为写模式,但是缓冲区可能未读完,这里需要使用compact
        buffer.compact();
    }
}

运行结果

+--------+-------------------- all ------------------------+----------------+
position: [12], limit: [12]
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 48 65 6c 6c 6f 2c 77 6f 72 6c 64 0a             |Hello,world.    |
+--------+-------------------------------------------------+----------------+
+--------+-------------------- all ------------------------+----------------+
position: [10], limit: [10]
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 49 27 6d 20 4e 79 69 6d 61 0a                   |I'm Nyima.      |
+--------+-------------------------------------------------+----------------+
+--------+-------------------- all ------------------------+----------------+
position: [13], limit: [13]
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 48 6f 77 20 61 72 65 20 79 6f 75 3f 0a          |How are you?.   |
+--------+-------------------------------------------------+----------------+

3、FileChannel

工作模式

FileChannel 只能在阻塞模式下工作,所以无法搭配 Selector

获取

不能直接打开 FileChannel,必须通过 FileInputStream、FileOutputStream 或者 RandomAccessFile 来获取 FileChannel,它们都有 getChannel 方法

  • 通过 FileInputStream 获取的 channel 只能读
  • 通过 FileOutputStream 获取的 channel 只能写
  • 通过 RandomAccessFile 是否能读写 根据构造 RandomAccessFile 时的读写模式决定

读取

通过 FileInputStream 获取 channel,通过 read 方法将数据写入到 ByteBuffer 中

read 方法的返回值表示读到了多少字节,若读到了文件末尾则返回 - 1

int readBytes = channel.read(buffer);

可根据返回值判断是否读取完毕

while(channel.read(buffer) > 0) {
    // 进行对应操作
    ...
}

写入

因为 channel 也是有大小的,所以 write 方法并不能保证一次将 buffer 中的内容全部写入 channel。必须需要按照以下规则进行写入

// 通过hasRemaining()方法查看缓冲区中是否还有数据未写入到通道中
while(buffer.hasRemaining()) {
    channel.write(buffer);
}

关闭

通道需要 close,一般情况通过 try-with-resource 进行关闭,最好使用以下方法获取 strea 以及 channel,避免某些原因使得资源未被关闭

public class TestChannel {
    public static void main(String[] args) throws IOException {
        try (FileInputStream fis = new FileInputStream("stu.txt");
             FileOutputStream fos = new FileOutputStream("student.txt");
             FileChannel inputChannel = fis.getChannel();
             FileChannel outputChannel = fos.getChannel()) {

            // 执行对应操作
            ...

        }
    }
}

位置

position

channel 也拥有一个保存读取数据位置的属性,即 position

long pos = channel.position();

可以通过 position (int pos) 设置 channel 中 position 的值

long newPos = ...;
channel.position(newPos);

设置当前位置时,如果设置为文件的末尾

  • 这时读取会返回 -1
  • 这时写入,会追加内容,但要注意如果 position 超过了文件末尾,再写入时在新内容和原末尾之间会有空洞(00)

强制写入

操作系统出于性能的考虑,会将数据缓存,不是立刻写入磁盘,而是等到缓存满了以后将所有数据一次性的写入磁盘。可以调用 force(true) 方法将文件内容和元数据(文件的权限等信息)立刻写入磁盘

2、两个 Channel 传输数据

transferTo 方法

使用 transferTo 方法可以快速、高效地将一个 channel 中的数据传输到另一个 channel 中,但一次只能传输 2G 的内容

transferTo 底层使用了零拷贝技术

public class TestChannel {
    public static void main(String[] args){
        try (FileInputStream fis = new FileInputStream("stu.txt");
             FileOutputStream fos = new FileOutputStream("student.txt");
             FileChannel inputChannel = fis.getChannel();
             FileChannel outputChannel = fos.getChannel()) {
            // 参数:inputChannel的起始位置,传输数据的大小,目的channel
            // 返回值为传输的数据的字节数
            // transferTo一次只能传输2G的数据
            inputChannel.transferTo(0, inputChannel.size(), outputChannel);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

当传输的文件大于 2G 时,需要使用以下方法进行多次传输

public class TestChannel {
    public static void main(String[] args){
        try (FileInputStream fis = new FileInputStream("stu.txt");
             FileOutputStream fos = new FileOutputStream("student.txt");
             FileChannel inputChannel = fis.getChannel();
             FileChannel outputChannel = fos.getChannel()) {
            long size = inputChannel.size();
            long capacity = inputChannel.size();
            // 分多次传输
            while (capacity > 0) {
                // transferTo返回值为传输了的字节数
                capacity -= inputChannel.transferTo(size-capacity, capacity, outputChannel);
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

3、Path 与 Paths

  • Path 用来表示文件路径
  • Paths 是工具类,用来获取 Path 实例
Path source = Paths.get("1.txt"); // 相对路径 不带盘符 使用 user.dir 环境变量来定位 1.txt

Path source = Paths.get("d:\\1.txt"); // 绝对路径 代表了  d:\1.txt 反斜杠需要转义

Path source = Paths.get("d:/1.txt"); // 绝对路径 同样代表了  d:\1.txt

Path projects = Paths.get("d:\\data", "projects"); // 代表了  d:\data\projects
  • . 代表了当前路径
  • .. 代表了上一级路径

例如目录结构如下

d:
    |- data
        |- projects
            |- a
            |- b

代码

Path path = Paths.get("d:\\data\\projects\\a\\..\\b");
System.out.println(path);
System.out.println(path.normalize()); // 正常化路径 会去除 . 以及 ..

输出结果为

d:\data\projects\a\..\b
d:\data\projects\b

4、Files

查找

检查文件是否存在

Path path = Paths.get("helloword/data.txt");
System.out.println(Files.exists(path));

创建

创建一级目录

Path path = Paths.get("helloword/d1");
Files.createDirectory(path);
  • 如果目录已存在,会抛异常 FileAlreadyExistsException
  • 不能一次创建多级目录,否则会抛异常 NoSuchFileException

创建多级目录用

Path path = Paths.get("helloword/d1/d2");
Files.createDirectories(path);

拷贝及移动

拷贝文件
Path source = Paths.get("helloword/data.txt");
Path target = Paths.get("helloword/target.txt");

Files.copy(source, target);
  • 如果文件已存在,会抛异常 FileAlreadyExistsException

如果希望用 source 覆盖 掉 target,需要用 StandardOption 来控制

Files.copy(source, target, StandardOption.REPLACE_EXISTING);

移动文件

Path source = Paths.get("helloword/data.txt");
Path target = Paths.get("helloword/data.txt");

Files.move(source, target, StandardOption.ATOMIC_MOVE);
  • StandardOption.ATOMIC_MOVE 保证文件移动的原子性

删除

删除文件

Path target = Paths.get("helloword/target.txt");

Files.delete(target);
  • 如果文件不存在,会抛异常 NoSuchFileException

删除目录

Path target = Paths.get("helloword/d1");

Files.delete(target);
  • 如果目录还有内容,会抛异常 DirectoryNotEmptyException

遍历

可以使用 Files 工具类中的 walkFileTree (Path, FileVisitor) 方法,其中需要传入两个参数

  • Path:文件起始路径

  • FileVisitor:文件访问器,

    使用访问者模式

    • 接口的实现类

      SimpleFileVisitor

      有四个方法

      • preVisitDirectory:访问目录前的操作
      • visitFile:访问文件的操作
      • visitFileFailed:访问文件失败时的操作
      • postVisitDirectory:访问目录后的操作
public class TestFiles {
    public static void main(String[] args) throws IOException {
        AtomicInteger ditCount = new AtomicInteger();
        AtomicInteger fileCount = new AtomicInteger();

        Files.walkFileTree(Paths.get("D:\\Program Files\\jdk7"),new SimpleFileVisitor<Path>(){
            @Override
            public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes attrs) throws IOException {
                System.err.println("=====>"+dir);
                ditCount.incrementAndGet();
                return super.preVisitDirectory(dir, attrs);
            }

            @Override
            public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) throws IOException {
                System.out.println("=====>"+file);
                fileCount.incrementAndGet();
                return super.visitFile(file, attrs);
            }
        });
        System.out.println("dir count :"+ditCount);
        System.out.println("file count :"+fileCount);
    }
}

运行结果如下

...
=====>D:\Program Files\jdk7\jre7\lib\zi\SystemV\EST5EDT
=====>D:\Program Files\jdk7\jre7\lib\zi\SystemV\HST10
=====>D:\Program Files\jdk7\jre7\lib\zi\SystemV\MST7
=====>D:\Program Files\jdk7\jre7\lib\zi\SystemV\MST7MDT
=====>D:\Program Files\jdk7\jre7\lib\zi\SystemV\PST8
=====>D:\Program Files\jdk7\jre7\lib\zi\SystemV\PST8PDT
=====>D:\Program Files\jdk7\jre7\lib\zi\SystemV\YST9
=====>D:\Program Files\jdk7\jre7\lib\zi\SystemV\YST9YDT
=====>D:\Program Files\jdk7\jre7\lib\zi\WET
=====>D:\Program Files\jdk7\jre7\lib\zi\ZoneInfoMappings
=====>D:\Program Files\jdk7\jre7\LICENSE
=====>D:\Program Files\jdk7\jre7\README.txt
=====>D:\Program Files\jdk7\jre7\release
=====>D:\Program Files\jdk7\jre7\THIRDPARTYLICENSEREADME-JAVAFX.txt
=====>D:\Program Files\jdk7\jre7\THIRDPARTYLICENSEREADME.txt
=====>D:\Program Files\jdk7\jre7\Welcome.html
dir count :183
file count :2437

本文由传智教育博学谷教研团队发布。

如果本文对您有帮助,欢迎关注点赞;如果您有任何建议也可留言评论私信,您的支持是我坚持创作的动力。

转载请注明出处!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/124157.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

黑客使用虚假 DDoS 保护页面分发恶意软件

WordPress 网站被黑客入侵后显示欺诈性 Cloudflare DDoS 保护页面&#xff0c;这些页面被用于分发恶意软件&#xff08;例如 NetSupport RAT 和 Raccoon Stealer&#xff09;。 “最近针对 WordPress 网站的 JavaScript 注入激增&#xff0c;通过弹出虚假的 DDoS 阻止提示&…

DaVinci:跟踪器 - 窗口

调色页面&#xff1a;跟踪器Color&#xff1a;Tracker跟踪器 - 窗口 Tracker - Window&#xff0c;是 DaVinci Resolve 提供的一款强大的跟踪工具。可以利用窗口调板所设置的窗口区域&#xff0c;通过自动分析之后&#xff0c;在此区域内产生许多如云状分布的特征点&#xff08…

Java8 Stream详细用法介绍

Java8 Stream详细用法介绍一、Stream概述1.1、流的定义1.2、流与集合1.3、流的特性1.4、Stream的创建1.5、Stream操作分类二、Stream API 使用2.1 中间操作2.1.1、filter() 过滤2.1.2、map与flatMap 映射2.1.3、sorted() 排序2.2 终止操作2.2.1、forEach() 遍历2.2.2、collect(…

ThinkPHP 多应用模式下访问其他应用忽略入口文件

目录 问题描述&#xff1a; 解决方法&#xff1a; 1.配置两个域名分别指向项目public目录 2.项目全局配置域名绑定应用 问题描述&#xff1a; 使用TP6.0做多应用项目开发&#xff0c;分为前端Api和后台管理 项目中已配置地址重写规则 Api为默认应用&#xff0c;可忽略入…

Allegro如何手动和自动10度走线操作指导

Allegro如何手动和自动10度走线操作指导 PCB上有时需要10度走线,可以有效的避免玻纤效应的产生,尤其是在应对高速设计的时候,Allegro支持10度走线如下图 具体操作如下 选择setup Parameter选择route

50个超级有用的JavaScript单行代码

在这篇文章中&#xff0c;我列出了一个系列的50个 JavaScript 单行代码&#xff0c;它们在使用 vanilla js&#xff08;≥ ES6&#xff09;进行开发时非常有用。它们也是使用该语言在最新版本中为我们提供的所有功能来解决问题的优雅方式。 我将它们分为以下5大类&#xff1a;…

波士顿房价数据集进行数据预处理和模型训练(Python)

目录 前言 一、数据预处理定义 二、波士顿房价数据进行数据预处理 2.1 下载波士顿房价数据集 2.2 查看数据集的描述、特征及数据条数、特征数量 2.3 将数据读入pandas的DataFrame并转存到csv文件 2.4 查看数据集各个特征的类型以及是否有空值 2.5 对数据集做中心化度量&a…

自动驾驶技术平台分享:百度Apollo开放平台8.0再升级,更简单,更便捷,更高效

文章目录自动驾驶技术入门&#xff0c;先看平台Appllo主要优势版本更新新特性颠覆更新“新”架构全新加入软件包管理机制加入新感知模型感知全流程开放与提效全新PnC工具链写在最后自动驾驶技术入门&#xff0c;先看平台 近年来&#xff0c;自动化驾驶的话题越来越成为热点。对…

【十天成为红帽工程师】第六天 DNS域名解析服务器

目录 一、域名解析服务器的介绍 二、DNS域名解析的过程 三、搭建DNS服务器 一、域名解析服务器的介绍 DNS&#xff08;Domain Name System&#xff09;是互联网上的一项服务&#xff0c;它作为将域名和IP地址相互映射的一个分布式数据库&#xff0c;能够使人更方便的访问互…

ChatGPT:新晋CV工程师

在短短的两个星期内&#xff0c;ChatGPT 迅速成为公众聊天的焦点。超过一百万的人与OpenAI的新聊天机器人“交谈”&#xff0c;让它写诗和大学论文&#xff0c;生成创意食谱&#xff0c;创建虚拟机…它也被用来撰写新闻文章和YouTube视频的介绍。作为计算机视觉公司的机器学习工…

Qt第五十一章:Qt样式表-Qss

目录 一、盒子模型 二、选择器 三、伪状态 四、字体 五、边框 六、背景 七、边距 八、示例大全 一、盒子模型 二、选择器 选择器示例描述通用选择器*匹配所有控件类型选择器QPushButton匹配给定类型控件&#xff0c;包括子类类选择器.QPushButton匹配给定类型控件&…

【PAT甲级 - C++题解】1032 Sharing

✍个人博客&#xff1a;https://blog.csdn.net/Newin2020?spm1011.2415.3001.5343 &#x1f4da;专栏地址&#xff1a;PAT题解集合 &#x1f4dd;原题地址&#xff1a;题目详情 - 1032 Sharing (pintia.cn) &#x1f511;中文翻译&#xff1a;共享 &#x1f4e3;专栏定位&…

[ 代码审计篇 ] 代码审计案例详解(二) XXE代码审计案例

&#x1f36c; 博主介绍 &#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 _PowerShell &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 &#x1f389;点赞➕评论➕收藏 养成习…

年底了,手机通讯录和相册被恶意APP获取,看我如何破局?

☆ 最近几天突然收到一个朋友的深夜短信&#xff0c;被告知如果有人发送不明信息&#xff0c;或者发送任何不明链接&#xff0c;都不要点开。我经过问朋友&#xff0c;得知下载了一个恶意的APP&#xff0c;把通讯录和手机相册获取了。 ☆ 年底了&#xff0c;很多人发愁过年没有…

ASIO IO_CONTEXT 源码整理

io_context关系图 io_context io_context::io_context(): impl_(add_impl(new impl_type(*this,ASIO_CONCURRENCY_HINT_DEFAULT, false))) { }io_context::io_context(int concurrency_hint): impl_(add_impl(new impl_type(*this, concurrency_hint 1 ? ASIO_CONCURRENCY_HI…

一千元以内的蓝牙耳机推荐,2023年最值得入手的蓝牙耳机分享

对于蓝牙耳机的选购技巧&#xff0c;我还是比较了解的&#xff0c;也知道有哪些蓝牙耳机比较好用&#xff0c;音质也好&#xff0c;但还是有很多人不知道该如何选购耳机&#xff0c;我也总是被问到蓝牙耳机挑选的相关问题&#xff0c;今天就来跟大家一起来了解了解什么蓝牙耳机…

看我这篇没人比你更懂RecyclerView的预加载

实际上&#xff0c;预拉取(prefetch)机制作为RecyclerView的重要特性之一&#xff0c;常常与缓存复用机制一起配合使用、共同协作&#xff0c;极大地提升了RecyclerView整体滑动的流畅度。 并且&#xff0c;这种特性在ViewPager2中同样得以保留&#xff0c;对ViewPager2滑动效…

【面试题】请你谈谈MySQL性能调优的方法

【面试题】请你谈谈MySQL性能调优的方法 这个问题是一个开放性问题&#xff0c;本人这一段时间参加面试&#xff08;2022.12.26&#xff09;经常被问道...... 刚刚开始我回答的很混乱&#xff01;虽然真的知道MySQL性能调优的方法&#xff0c;也做过类似的工作&#xff0c;但…

【BF算法】

BF 算法 BF 算法精讲 在学习到字符串的匹配问题时&#xff0c;了解到了BF算法和KMP算法。 对比这两个算法&#xff0c;先了解BF算法&#xff1b; 字符串匹配问题&#xff0c;比如说&#xff1a;有一个主串 “abbbcdef” &#xff0c; 子串 “bbc”&#xff0c;该问题就是在主…

Linux基础 - DNS服务基础

‍‍&#x1f3e1;博客主页&#xff1a; Passerby_Wang的博客_CSDN博客-系统运维,云计算,Linux基础领域博主 &#x1f310;所属专栏&#xff1a;『Linux基础』 &#x1f30c;上期文章&#xff1a; Linux基础 - Web服务基础 &#x1f4f0;如觉得博主文章写的不错或对你有所帮助…