MEMS制造的基本工艺——晶圆键合工艺

news2024/10/2 6:35:16

晶圆键合是一种晶圆级封装技术,用于制造微机电系统 (MEMS)、纳米机电系统 (NEMS)、微电子学和光电子学,确保机械稳定和气密密封。用于 MEMS/NEMS 的晶圆直径范围为 100 毫米至 200 毫米(4 英寸至 8 英寸),用于生产微电子器件的晶圆直径最大为 300 毫米(12 英寸)。

在微纳加工 (MEMS / NEMS) 中,封装可保护敏感的内部结构免受温度、湿度、高压和氧化物质等环境影响。内部功能元器件的长期稳定性和可靠性取决于封装工艺,这部分封装工艺也占了整体成本的很大比重。比如 MEMS压力传感器 的加工中就会涉及到晶圆键合这个工艺步骤。

图片

图1-压力传感器加工中的键合工艺

晶圆键合需要特定的环境条件等参数,通常有下面几项变量:

  • 基材表面

  • 平整度

  • 清洁度

  • 键合环境(温度、压力)

  • 施加的力

实际的键合效果会受到这些变量的相互作用影响。因此,需要根据当前晶圆基材和键合的规格定义来选择相应的参数。

此外,为了评估键合工艺的产量、强度和气密性水平,还需要对键合晶圆进行表征,一般的表征方法有:

  • 破坏性技术,例如对键合以后的晶圆进行拉伸或剪切测试

  • 非破坏性技术,例如用光学方法来发现裂纹或界面空隙,以评估粘合强度

  • 非破坏性技术,还可以某些气体、液体进行填充,用于气密性测试

键合工艺可以细分为如下几种技术:

  • 直接键合(Direct bonding)

  • 表面活化键合(Surface activated bonding)

  • 等离子激活键合(Plasma activated bonding)

  • 阳极键合(Anodic bonding)

  • 共晶键合(Eutectic bonding)

  • 玻璃熔块键合(Glass frit bonding)

  • 粘接(Adhesive bonding)

  • 热压键合(Thermocompression bonding)

  • 反应键合(Reactive bonding)

  • 瞬态液相扩散键合(Transient liquid phase diffusion bonding)

  • 原子扩散键合(Atomic diffusion bonding)

  • 临时键合(Temporal Silicon Bonding)

我们主要介绍其中三种:直接键合(Direct bonding)、阳极键合(Anodic bonding)、共晶键合(Eutectic bonding)。

直接键合(Direct bonding)

硅直接键合,也称为硅熔合键合,是一种能够牢固地连接两个硅片的工艺,主要利用机械力和高于700摄氏度的高温将两个硅片键合在一起。

它的出现是 20 世纪 80 年代高频和抗辐射 CMOS 应用 SOI 技术发展的重要一步。这一概念在后来扩展到压力传感器和加速度计的制造,现在已成为 MEMS 工具箱中的一项重要技术。

图片

图2-SOI晶圆中的键合

硅直接键合可以在两个裸露的单晶硅表面或抛光的多晶硅之间进行。为了实现均匀且无空隙的键合,表面必须没有颗粒和化学污染,如在 100 毫米晶圆上平坦度在 5 μm 以内。具体的键合过程从对硅片表面进行清洁和水合开始。以下是典型的顺序:

  • 首先,在热 Piranha(硫酸和过氧化氢)溶液中对晶圆进行预清洗。 

  • 将它们浸入稀释的 HF 溶液中,蚀刻掉天然氧化物(或热氧化物表面)并去除氧化物中捕获的污染物。

  • 进行 RCA-1 清洁(热氢氧化铵和过氧化氢溶液)清洁,旨在去除有机物。

  • 进行 RCA-2 清洁(热盐酸和过氧化氢溶液)以去除金属污染物。所有热的过氧化氢溶液都会在表面形成键合所需的羟基 (-OH)。这称为水合作用。

  • 小心地使粘合表面接触并通过范德华力保持在一起。

  • 根据反应,在 800° 至 1,100°C 下退火几个小时可促进并强化结合。

图3-直接键合流程

图片

图4-范德华力 Van Der Waals forces

当然,实际键合过程中,分子间相互作用有多种,范德华力是其中之一,其他还有氢键和共价键。

在某些情况下,两个硅片表面上的图形化特征必须在键合之前彼此对准。例如,一个硅片中的空腔需要对接连接到第二个硅片提供的入口。这需要特殊设备来执行对准和键合,SÜSS MicroTec 和 EV Group 这两家设备制造商就有类似的技术方案,大体过程是:

  • 将晶圆依次安装在特殊的机械夹具中,并以类似于光刻中双面对准的方式与彼此面对的两个键合表面对准。

  • 机械夹具将对齐的晶圆固定到位,晶圆边缘由薄垫片隔开。

  • 使晶圆的中心接触并去除间隔物,使键合区域从晶圆中心延伸到边缘。对准的相对错位通常小于 5 μm,最高可达 1 μm。

图片

图5-EV Group的键合机台

阳极键合(Anodic bonding)

阳极键合,是一种将硅片和含钠玻璃基板(例如 Borofloat 33)连接在一起的键合工艺。它用于制造各种传感器,为硅片提供了刚性支撑。

键合过程在真空、空气或惰性气体环境中、在200°C至500°C之间的温度下进行。在两个基板上施加 500 至 1,500V 的电压,同时玻璃保持在负电势,导致玻璃中的移动正离子(主要是 Na + )从硅-玻璃界面向阴极迁移,留下固定的负离子。玻璃中固定的负离子与硅片的正电荷之间的静电引力将两个基板固定在一起,并促进玻璃与硅的化学键合。当离子电流(在外部测量为电子电流)消失时,键合完成,表明所有移动离子已到达阴极。

图片

图6-玻璃和硅之间的阳极键合示意图

玻璃基板的热膨胀系数优选与硅的热膨胀系数匹配,以便最小化热应力。

共晶键合(Eutectic bonding)

共晶键合,也称为共晶焊接,是两种或多种金属的组合允许在特定温度下直接从固态转变为液态。共晶温度远低于键合过程中涉及的材料的熔化温度。共晶键合广泛用于 MEMS 行业的气密密封、压力或真空封装。

共晶键合中最常用的金属/合金是 Al-Ge、Au-Sn 和 Au-In,还有许多其他材料组合可以产生共晶键合系统。此外,硅与金等金属形成合金的能力也可以成为共晶键合的基础。所有共晶键必须经过液相,因此对表面平整度不规则性、划痕和颗粒不太敏感,从而有利于大批量生产。

键合温度、时间和压力是共晶键合最重要的参数,共晶键合可以在较低的加工温度和最小的合成应力下实现高键合强度。共晶键合还可在单一工艺中实现气密密封和电气互连。与其他中间层(例如粘合剂或玻璃料)相比,共晶键合还可以促进更好的排气和气密性。

图片

图7-GaAs/InP 晶圆中的 Au-Sn 共晶金属键合

(源自EVG官网)

图片

图8-MEMS/ASIS 晶圆中的 Al-Ge 共晶键合

(源自EVG官网)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1241194.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

wpf使用CefSharp.OffScreen模拟网页登录,并获取身份cookie,C#后台执行js

目录 框架信息&#xff1a;MainWindow.xamlMainWindow.xaml.cs爬取逻辑模拟登录拦截请求Cookie获取 CookieVisitorHandle 框架信息&#xff1a; CefSharp.OffScreen.NETCore 119.1.20 MainWindow.xaml <Window x:Class"Wpf_CHZC_Img_Identy_ApiDataGet.MainWindow&qu…

NX二次开发UF_CAM_set_clear_plane_status 函数介绍

文章作者&#xff1a;里海 来源网站&#xff1a;https://blog.csdn.net/WangPaiFeiXingYuan UF_CAM_set_clear_plane_status Defined in: uf_cam_planes.h int UF_CAM_set_clear_plane_status(tag_t object_tag, UF_PARAM_clrplane_status_t status ) overview 概述 Set th…

安防视频EasyCVR平台太阳能供电+4G摄像头视频监控方案的建设

在工地、光伏、风电站、水库河道等场景中&#xff0c;以及一些偏远地区的项目现场&#xff0c;会存在无网无电情况&#xff0c;大大制约了视频监控系统建设的效率及可行性。在这种场景中&#xff0c;我们也可以通过太阳能供电4G监控摄像机的方案&#xff0c;满足偏远地区无网无…

【Vue】Node.js的下载安装与配置

目录 一.下载安装 官网&#xff1a; 二.环境变量的配置 三.设置全局路径和缓存路径 四.配置淘宝镜像 五.查看配置 六.使用npm安装cnpm ​ 一.下载安装 官网&#xff1a; https://nodejs.org/en/download 下载完之后&#xff0c;安装的时候一直点next即可&#xff0c…

Nginx配置文件中的关键字是什么?详细解释来了

点击上方蓝字关注我 Nginx 是一款高性能的 Web 服务器软件&#xff0c;同时也是一款反向代理服务器软件。Nginx 的配置文件通常是 /etc/nginx/nginx.conf&#xff0c;以下是一个典型的配置文件&#xff0c;并对其中的关键字进行详细解释。 1. 配置文件 perlCopy codeuser ngin…

python爬虫教程:selenium常用API用法和浏览器控制

文章目录 selenium apiwebdriver常用APIwebelement常用API 控制浏览器 selenium api selenium新版本(4.8.2)很多函数&#xff0c;包括元素定位、很多API方法均发生变化&#xff0c;本文记录以selenium4.8.2为准。 webdriver常用API 方法描述get(String url)访问目标url地址&…

智能车入门——舵机

在进行智能车竞赛时&#xff0c;舵机的学习过程至关重要&#xff0c;以下是在这一过程中需要注意的几个关键步骤。 舵机概念与结构 舵机主要由直流电机、变速齿轮组、电位器、控制板所构成&#xff0c;舵机的输出轴与电位器是同轴的&#xff0c;当舵机收到控制信号之后会驱动电…

Uptime Kuma 企业微信群机器人告警

curl https://qyapi.weixin.qq.com/cgi-bin/webhook/send?key693axxx6-7aoc-4bc4-97a0-0ec2sifa5aaa \-H Content-Type: application/json \-d {"msgtype": "text","text": {"content": "hello world"}}企业微信群机器人ke…

装饰器设计模式是什么?什么是 Decorator 装饰器设计模式?Python 装饰器设计模式示例代码

什么是 Decorator 装饰器设计模式&#xff1f; 装饰器模式是一种结构型设计模式&#xff0c;它允许向现有对象动态地添加新功能&#xff0c;同时不改变其结构。这种模式实现了对对象的包装&#xff0c;称为装饰器&#xff0c;并且可以在运行时动态地添加、修改或删除对象的行为…

PyTorch深度学习实战——人体姿态估计

PyTorch深度学习实战——人体姿态估计 0. 前言1. 人体姿态估计2. 使用 Detectron2 实现人体姿态估计相关链接 0. 前言 我们已经学习了如何执行实例分割&#xff0c;在本节中&#xff0c;我们将了解如何利用 Detectron2 对图像执行人体姿态估计&#xff0c;检测图像中人物的身体…

2023亚太杯数学建模A题思路 - 采果机器人的图像识别技术

# 1 赛题 问题A 采果机器人的图像识别技术 中国是世界上最大的苹果生产国&#xff0c;年产量约为3500万吨。与此同时&#xff0c;中国也是世 界上最大的苹果出口国&#xff0c;全球每两个苹果中就有一个&#xff0c;全球超过六分之一的苹果出口 自中国。中国提出了一带一路倡议…

【开源】基于Vue.js的民宿预定管理系统

项目编号&#xff1a; S 058 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S058&#xff0c;文末获取源码。} 项目编号&#xff1a;S058&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用例设计2.2 功能设计2.2.1 租客角色…

SpringBoot整合RabbitMQ中交换机的使用(完成消息的发送和接收案例)

系列文章目录 1.SpringBoot整合RabbitMQ并实现消息发送与接收 2. 解析JSON格式参数 & 修改对象的key 3. VUE整合Echarts实现简单的数据可视化 4. List&#xff1c;HashMap&#xff1c;String,String&#xff1e;&#xff1e;实现自定义字符串排序&#xff08;key排序、Val…

雷电模拟器打开指针位置无效果解决方法(开发者模式)

预期效果 1.打开文件所在位置 2.进入vms目录 3.新建一个名为debug的txt格式的文件 4.打开开发者模式里面指针位置的选项 5.重启模拟器 6.噔噔噔噔~

教你如何将Web项目部署到Linux中

文章目录 前言0. 什么是部署1. 调整代码达成一致2. 数据库建表3. 构建项目并打包4. 拷贝到 Tomcat 中5. 效果总结 前言 在我们完成了一个Web项目后, 我们该怎样将项目部署到 Linux 系统中呢? 本文就来简单讲解一下. 文章已部署本人的博客系统代码展开讲解. 关注收藏, 开始学…

【数据库】数据库中的备份与恢复,保障容灾时的数据一致性与完整性

数据库的备份机制 ​专栏内容&#xff1a; 手写数据库toadb 本专栏主要介绍如何从零开发&#xff0c;开发的步骤&#xff0c;以及开发过程中的涉及的原理&#xff0c;遇到的问题等&#xff0c;让大家能跟上并且可以一起开发&#xff0c;让每个需要的人成为参与者。 本专栏会定期…

postman定义公共函数这样写,测试组长直呼牛逼!!!

postman定义公共函数 在postman中&#xff0c;如下面的代码&#xff1a; 1、返回元素是否与预期值一致 var assertEqual(name,actual,expected)>{tests[${name}&#xff1a;实际结果&#xff1a; ${actual} &#xff0c; 期望结果&#xff1a;${expected}]actualexpected…

YOLO目标检测——卫星遥感多类别检测数据集下载分享【含对应voc、coco和yolo三种格式标签】

实际项目应用&#xff1a;卫星遥感目标检测数据集说明&#xff1a;卫星遥感多类别检测数据集&#xff0c;真实场景的高质量图片数据&#xff0c;数据场景丰富&#xff0c;含网球场、棒球场、篮球场、田径场、储罐、车辆、桥、飞机、船等类别标签说明&#xff1a;使用lableimg标…

Mysql中自增主键是如何工作的

自增主键的特点是当表中每新增一条记录时&#xff0c;主键值会根据自增步长自动叠加&#xff0c;通常会将自增步长设置1&#xff0c;也就是说自增主键值是连续的。那么MySQL自增主键值一定会连续吗&#xff1f;今天这篇文章就来说说这个问题&#xff0c;看看什么情况下自增主键…

灵活运用Vue 3中的setup函数—深入解析Composition API

新建项目&#xff0c;项目主入口为App.vue&#xff08;主组件&#xff09;&#xff0c;新建child.vue&#xff08;子组件&#xff09;。 1.1 setup 执行 时机问题 1.在主组件里引入子组件和ref&#xff1a; import {ref} from vue import child from ./components/child.vue2…