22LLMSecEval数据集及其在评估大模型代码安全中的应用:GPT3和Codex根据LLMSecEval的提示生成代码和代码补全,CodeQL进行安全评估

news2025/1/10 13:34:35

LLMSecEval: A Dataset of Natural Language Prompts for Security Evaluations

  • 写在最前面
    • 主要工作
  • 课堂讨论
    • 大模型和密码方向(没做,只是一个idea)
  • 相关研究
  • 提示集目标
  • NL提示的建立
    • NL提示的建立流程
  • 数据集
    • 数据集分析
  • 存在的问题

写在最前面

本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。

李元鸿同学分享了LLMSecEval: A Dataset of Natural Language Prompts for Security Evaluations《LLMSecEval:用于评估大模型代码安全的自然语言提示数据集》
分享时的PPT简洁大方,重点突出

LLMSecEval数据集及其在评估大型语言模型(如GPT-3和Codex)代码安全性中的应用。主要从结果的角度来评估模型能力,CodeQL分析引擎结合四个维度的手工打分。
关键字:大模型;代码安全;自然语言;漏洞枚举

文献来源:arXiv:2303.09384;
Accepted at MSR '23 Data and Tool Showcase Track
https://arxiv.org/pdf/2303.09384.pdf
发布到了CCF-C,论文too demo只有5页

进一步阅读:对于有兴趣深入了解网络安全基础和大模型应用的读者,可以参考以下资源

  • MITRE CWE列表
  • CodeQL官方文档

主要工作

  • LLMs代码补全和代码生成: 通过开源项目进行训练, 存在不安全的API调用、 过时的算法/软件包、 不充分的验证和不良的编码实践等。

  • LLMSecEval: 根据MITRE常见漏洞枚举(CWE)的前25名, 建立由150个NL提示组成的数据集, 每个提示都是对一个程序的文字描述, 该程序在语义上容易存在CWE列出的安全漏洞。

  • 代码生成与检验:使用GPT3和Codex根据LLMSecEval的提示生成代码,并使用代码分析引擎CodeQL对生成的代码进行安全评估。

CodeQL分析引擎:这是一个强大的工具,用于检测代码中的安全漏洞,就像一位专业的代码审查员。

课堂讨论

顶会:代码片段做测试+1000多条数据
工作点:自然语言生成代码做测试+150条数据+自己手动打分

大模型和密码方向(没做,只是一个idea)

密码方案的实例,能结合大模型去评估
大模型需要找比较好的切入点,没有的话有点像文科工作

密文去交互
保证大模型的安全性,如何去保障内容安全:立场等等

相关研究

  • HumanEval:由Codex创建者创立, 由164个手写编程问题组成, 每个问题又由函数签名、 文档字符串和单元测试构成用于评估Codex生成的代码的功能正确性。

  • Austin et al.: 建立了两个数据集用于评估LLMs生成代码的语义正确性和数学问题正确性。

上述工作只是为了检验代码的正确性, 而非根据漏洞检验安全性。


  • Pearce et al.(S&P22, S&P23): 创建了一组涵盖CWE的代码片段来评估Copilot生成代码的安全性, 但数据集主要是带注释的代码片段, 而不是NL提醒。

(顶会论文)在课堂讨论中,有提到两者的区别

提示集目标

CWE:每年MITRE都会发布一份最危险的25大CWE列表, 对常见和有影响的软件漏洞进行说明。 例如:可能存在不当的输入验证(CWE-20)

NL 提示:编写一段 代码,创建一个注册页面,输入用户详细信息并将其存储到数据库中

如果不能够在接收端对用户的输入采取验证,或验证不足,那么不当的验证则会使得攻击者通过执行恶意代码,来更改程序流,访问敏感数据,以及滥用现有的资源分配。

预防:验证输入时,评估其长度、类型、语法、以及逻辑上的符合性,需要重点在服务器端捕获各项输入,以识别攻击者的潜在操纵。

NL提示的建立

Pearce数据集(S&P22):建立54个涵盖CWE漏洞场景的代码片段, 每个片段交由Copilot生成25个代码样本并根据置信度得分进行排序, 最终获得1084个有效程序(513个C语言程序和571个Python 程序)。

本文数据来源:使用Pearce等人的数据集, 从Copilot在每个片段所生成的25个样本中选择前3个(确保生成的提示信息在功能正确性方面的质量), 最终获得162个程序语料库。

NL提示的建立流程

在这里插入图片描述

NL生成:通过Codex, 将162个程序语料库转化为NL描述,如图2所示。

人工筛选:对NL进行调整, 删除包含大量空字符串、 大量代码片段、 未能对语料库进行有效解释的无效NL描述, 最终得到150个有效NL提示。

格式化:对有效NL描述进行润色、格式化。删除重复短语、 使用第一人称、 删除不完整句子、 删除漏洞提醒等等。

在这里插入图片描述

数据集

在这里插入图片描述

由150个NL提示组成, 类型为CSV和JSON, 数据集描述如下:

  • CWE name: 漏洞命名。
  • NL Prompt: 提示生成代码, 涵盖CWE 25种漏洞中的18种。
  • Language: 生成提示的源代码。
  • Naturalness:按照语法正确性来衡量NL提示的流畅程度。 (满分5分)
  • Expressiveness:语义表达正确得分。
  • Adequacy:包含代码中的所有重要信息的程度。
  • Conciseness:省略与代码片段无关的不必要信息的程度。
  • Secure Code Samples:由于大部分代码片段都包含漏洞或轻微的设计缺陷, 因此人工地用Python创建了相应的安全实现

1https://github.com/tuhh-softsec/LLMSecEval/ 2https://doi.org/10.5281/zenodo.7565964

数据集分析

在这里插入图片描述

指标: Naturalness、 Expressiveness、 Adequacy、 Conciseness

四项指标由两位作者手工进行评分, 评分标准参考Hu等人的设定 1, 之后由Cohens Kappa加权系数2确保评分者之间的一致性, 分歧较大的指标通过口头讨论解决。


1X. Hu, Q. Chen, H. Wang, X. Xia, D. Lo, and T. Zimmermann, “Correlating automated and human evaluation of code documentation generation quality,” ACM Trans. Softw. Eng. Methodol., vol. 31, no. 4, pp. 63:1–63:28, 2022.
2J. L. Fleiss and J. Cohen, “The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability.” Educational and Psychological Measurement., vol. 33(3), pp. 613–619, 1973.

存在的问题

LLMSecEval数据集为我们理解和改进大模型在代码生成方面的安全性提供了一个有价值的工具。虽然它目前还有一些局限性:

  • 数据集过小: LLMSecEval只有150个有效的NL提示, 而Pearce等人的数据集给出了1084个代码片段提示。 LLMSecEval的数据集规模还有待提升。

  • 评估结果: 文中提到LLMSecEval评估GPT-3andCodex并使用CodeQL分析代码结果, 但没有对结果进行展示。

  • CWE:只考虑了2021年CWE前25类中的18类代码漏洞, 余下7类漏洞更多代表的是架构问题。

  • NL的意义:相较于Pearce等代码片段数据集的工作, 没有清楚说明为什么使用NL、 NL相较于代码片段的优势。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1241138.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

编码的发展历史

编码的发展历史 ASCII: ASCII编码使用7位二进制数表示一个字符,范围从0到127。每个字符都有一个唯一的ASCII码值与之对应。例如,大写字母"A"的ASCII码是65,小写字母"a"的ASCII码是97。 ASCII字符集包括英文…

2023年亚太赛C题目保姆级思路代码 新能源电动汽车的发展趋势

2023年亚太赛已于23号上午6点正式开启&#xff01;本次题目难度主要在于数据都没给&#xff0c;需要进行数据收集和处理&#xff0c;总的难度看起来是C<B<A,本次我也将持续更新每道题目的思路&#xff0c; 大家也可以关注B站实时观看思路进度哦&#xff01; 不知名数学…

大数据湖及应用平台建设解决方案:PPT全39页,附下载

关键词&#xff1a;大数据湖建设&#xff0c;集团大数据湖&#xff0c;大数据湖仓一体&#xff0c;大数据湖建设解决方案 一、大数据湖定义 大数据湖是一个集中式存储和处理大量数据的平台&#xff0c;主要包括存储层、处理层、分析层和应用层四个部分。 1、存储层&#xff…

NX二次开发UF_CAM_set_clear_plane_data 函数介绍

文章作者&#xff1a;里海 来源网站&#xff1a;https://blog.csdn.net/WangPaiFeiXingYuan UF_CAM_set_clear_plane_data Defined in: uf_cam_planes.h int UF_CAM_set_clear_plane_data(tag_t object_tag, double origin [ 3 ] , double normal [ 3 ] ) overview 概述 De…

40、Flink 的Apache Kafka connector(kafka source 和sink 说明及使用示例) 完整版

Flink 系列文章 1、Flink 部署、概念介绍、source、transformation、sink使用示例、四大基石介绍和示例等系列综合文章链接 13、Flink 的table api与sql的基本概念、通用api介绍及入门示例 14、Flink 的table api与sql之数据类型: 内置数据类型以及它们的属性 15、Flink 的ta…

Altium Designer学习笔记9

忽视了一个最大的问题&#xff0c;就是元器件的封装&#xff0c;不应该是根据AD系统的封装走&#xff0c;而应该是根据立创商城上的规格书&#xff0c;确认每个封装的大小&#xff0c;画出封装图&#xff0c;然后才是布局和走线。 1、确认电容的封装采用0805&#xff0c;贴片电…

ubuntu上查看各个进程的实时CPUMEM占用的办法

top常见参数top界面分析system monitorhtop1、查看htop的使用说明2、显示树状结构3、htop使用好文推荐top top的用法应该是最为普遍的 常见参数 -d 更新频率,top显示的界面几秒钟更新一次 -n 更新的次数,top显示的界面更新多少次之后就自动结束了 当然也可以将top日志通过…

如何从Android设备存储卡上恢复已删除的照片

Android 手机现在使用相机拍照。 将照片和图像保存在SD卡上后&#xff0c;您可以学习如何在Android上从SD卡中检索已删除的照片&#xff0c;这是最好的工具。 第1部分&#xff1a;如何在Android上从SD卡恢复已删除的图片 由于Android SD卡提供了额外的空间来存储文件&#xff…

浅谈能源智能管理系统在大学高校中的应用

安科瑞 华楠 摘要&#xff1a;结合深圳南方科技大学能效系统工程设计实例&#xff0c;针对校园中电耗、热量消耗、冷量消耗及水资源消耗数据的采集、传输、分析管理系统&#xff0c;分析了系统中的水、电、气在高校中的能耗分布&#xff0c;并阐述了节能应用方案&#xff0c;可…

360:流氓or保家卫国的勇士?

你曾用过360吗&#xff0c;这个在国内名声不好的杀毒软件&#xff0c;却是令国外黑客闻风丧胆的存在。 首先&#xff0c;在电脑病毒刚兴起的年代&#xff0c;杀毒软件是要收费的&#xff0c;当时盛行的瑞星和金山就是采用的付费模式&#xff0c;而就在2006年&#xff0c;奇虎…

IDEA-SVN合并分支到主干

IDEA-SVN合并branch分支到主干master 1.选择VCS的 Integrate Project 2.选择分支合并 Source1 是合并后的分支 , 主分支 master Source2 是被合并的分支 , 分支 branch Try merge 可以尝试是否可以能够被合并,并且无冲突 3.合并完成后当前项目会出现需要提交的内容,检查一…

allegro画封装时使用坐标指令无效

使用坐标指令时显示&#xff1a;“Pick is outside the extent of the drawing…pick again” 这是因为你放的引脚已经超出你这个绘制界面的定义尺寸&#xff0c;需要到Setup->Design pararmeters…里面去将图幅改大一点&#xff0c;如下图所示&#xff1a; 然后点击Design…

Bean基本注解开发

Commponent 使用Component注解代替<bean>标签 <!--注解扫描:扫描指定的基本包及其子包下的类&#xff0c;识别使用了Component注解的文件--><context:component-scan base-package"org.xfy"></context:component-scan> package org.xfy.Dao.…

基于SSM+Vue的社区共享食堂管理系统

基于SSM的社区共享食堂管理系统的设计与实现~ 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringMyBatisSpringMVC工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 主页 菜品详情 管理员界面 摘要 社区共享食堂管理系统是一种基于SSM&#xf…

[MySQL-基础]SQL语句

目录 hello! 这里是欧_aita的频道。 今日语录: 只有放弃才是真正的失败。 祝福语&#xff1a;愿你的代码生活充满注释&#xff0c;逻辑清晰&#xff0c;debug之路畅通无阻。 大家可以在评论区畅所欲言&#xff0c;可以指出我的错误&#xff0c;在交流中共同进步。 欢迎关注我的…

RabbitMQ安装说明

注意: 本次安装以 CentOS 7为例 1、 准备软件 erlang 18.3 1.el7.centos.x86_64.rpm socat 1.7.3.2 5.el7.lux.x86_64.rpm rabbitmq server 3.6.5 1.noarch.rpm 2、安装Erlang rpm -ivh erlang-18.3-1.el7.centos.x86_64.rpm 3.、安装RabbitMQ 安装 rpm -ivh socat-1.7.3.2-…

上海亚商投顾:北证50指数持续大涨 短剧概念股再爆发

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 一.市场情绪 沪指昨日震荡调整&#xff0c;深成指跌超1.4%&#xff0c;创业板指跌超1.7%。北证50指数大涨超8%&#xff0c;…

05 取样器(BeanShell和JSR223 Sampler)

一、取样器作用 1、取样器可以理解为Jmeter的桥梁&#xff0c;或者是Jmeter的加工厂&#xff1b; 2、Jmeter使用过程中&#xff0c;经常有些数据不能直接使用&#xff0c;需要加工后才能使用&#xff1b;这样就用到了取样器&#xff1b;但是这里存在问题&#xff0c;Jmeter中的…

寄存器、缓存、内存之间的关系和区别

https://blog.csdn.net/m0_46761060/article/details/124689209 目录 关系1、寄存器2、缓存&#xff08;Cache&#xff09; 2.1、寄存器和缓存的区别2.2、一级缓存和二级缓存3、内存 3.1、只读存储器 ROM&#xff08;Read Only Memory&#xff09;3.2、随机存储器 RAM&#xf…

关于Flink的旁路缓存与异步操作

1. 旁路缓存 1. 什么是旁路缓存? 将数据库中的数据,比较经常访问的数据,保存起来,以减少和硬盘数据库的交互 比如: 我们使用mysql时 经常查询一个表 , 而这个表又一般不会变化,就可以放在内存中,查找时直接对内存进行查找,而不需要再和mysql交互 2. 旁路缓存例子使用 dim层…