寄存器、缓存、内存之间的关系和区别

news2024/10/3 4:30:20

https://blog.csdn.net/m0_46761060/article/details/124689209

目录
  • 关系
  • 1、寄存器
  • 2、缓存(Cache)
    • 2.1、寄存器和缓存的区别
    • 2.2、一级缓存和二级缓存
  • 3、内存
    • 3.1、只读存储器 ROM(Read Only Memory)
    • 3.2、随机存储器 RAM(Random Access Memory)
      • 3.2.1、静态RAM(Static RAM/SRAM)
      • 3.2.2、动态RAM(Dynamic RAM/DRAM)

关系

在这里插入图片描述

1、寄存器

寄存器(register)是CPU(中央处理器)的组成部分,是一种直接整合到cpu中的有限的高速访问速度的存储器,它是有一些与非门组合组成的,分为通用寄存器和特殊寄存器。cpu访问寄存器的速度是最快的。那为什么我们不把数据都存储到寄存器中呢,因为寄存器是一种容量有限的存储器,并且非常小。因此只把一些计算机的指令等一些计算机频繁用到的数据存储在其中,来提高计算机的运行速度。

2、缓存(Cache)

缓存就是数据交换的缓冲区(称作Cache),当某一硬件要读取数据时,会首先从缓存中查找需要的数据,如果找到了则直接执行,找不到的话则从内存中找。由于缓存的运行速度比内存快得多,故缓存的作用就是帮助硬件更快地运行。

因为缓存往往使用的是RAM(断电即掉的非永久储存),所以在用完后还是会把文件送到硬盘等存储器里永久存储。电脑里最大的缓存就是内存条了,最快的是CPU上镶的L1和L2缓存,显卡的显存是给显卡运算芯片用的缓存,硬盘上也有16M或者32M的缓存。

CACHE是在CPU中速度非常块,而容量却很小的一种存储器,它是计算机存储器中最强悍的存储器。由于技术限制,容量很难提升。

对于大多数人来说Cache,是透明的、不存在的。其中一个原因是Cache是集成到CPU中,对于程序员来说是透明的。

2.1、寄存器和缓存的区别

按与CPU远近来分,离得最近的是寄存器,然后缓存,最后内存。所以,寄存器是最贴近CPU的,而且CPU只与寄存器中进行存取。寄存器从内存中读取数据,但由于寄存器和内存读取速度相差太大,所以有了缓存。即读取数据的方式为:

CPU <------>寄存器 <---->缓存<----->内存

当寄存器没有从缓存中读取到数据时,也就是没有命中,那么就从内存中读取数据。

2.2、一级缓存和二级缓存

CPU读取数据的顺序为先缓存后内存。

CPU内部集成的缓存称为一级缓存(L1 Cache),外部的称为二级缓存(L2 Cache)。

一级缓存中又分为数据缓存(D-Cache)和指令缓存(I-Cache)。二者可以同时被CPU进行访问,减少了争用Cache所造成的冲突,提高了CPU的效能。

CPU的一级缓存通常都是静态RAM(Static RAM/SRAM),速度非常快,但是贵。

为提高系统的性能和速度又必须扩大缓存,所以在不扩大原来的静态RAM缓存容量的情况下,仅仅增加一些高速动态RAM(Dynamic RAM/DRAM)做为L2级缓存。高速动态RAM速度要比常规动态RAM快,但比原来的静态RAM缓存慢,而且成本也较为适中。一级缓存和二级缓存中的内容都是内存中访问频率高的数据的复制品(映射),它们的存在都是为了减少高速CPU对慢速内存的访问。

二级缓存是CPU性能表现的关键之一,在CPU核心不变化的情况下,增加二级缓存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二级缓存上存在差异.

CPU在缓存中找到有用的数据被称为命中,当缓存中没有CPU所需的数据时(这时称为未命中),CPU才访问内存。从理论上讲,在一颗拥有二级缓存的CPU中,读取一级缓存的命中率为80%。也就是说CPU一级缓存中找到的有用数据占数据总量的80%,剩下的20%从二级缓存中读取。由于不能准确预测将要执行的数据,读取二级缓存的命中率也在80%左右(从二级缓存读到有用的数据占总数据的16%)。那么还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。

在较高端CPU中,还会带有三级缓存,它是为读取二级缓存后未命中的数据设计的一种缓存,在拥有三级缓存的CPU中,只有约5%的数据需要从内存中调用,这进一步提高了CPU的效率,从某种意义上说,预取效率的提高,大大降低了生产成本却提供了非常接近理想状态的性能。

3、内存

ROM在系统停止供电的时候仍然可以保持数据,而RAM通常都是在掉电之后就丢失数据,典型的RAM就是计算机的内存。

3.1、只读存储器 ROM(Read Only Memory)

PROM是可编程的ROM,PROM和EPROM(可擦除可编程ROM)两者区别是,PROM是一次性的,也就是软件灌入后,就无法修改了,现在已经不可能使用了,而EPROM是通过紫外光的照射擦除原先的程序,是一种通用的存储器。另外一种EEPROM是通过电子擦除,价格很高,写入时间很长,写入很慢。

3.2、随机存储器 RAM(Random Access Memory)

3.2.1、静态RAM(Static RAM/SRAM)

当数据被存入其中后不会消失。SRAM速度非常快,是目前读写最快的存储设备。当这个SRAM 单元被赋予0 或者1 的状态之后,它会保持这个状态直到下次被赋予新的状态或者断电之后才会更改或者消失。需要4-6 只晶体管实现, 价格昂贵。

3.2.2、动态RAM(Dynamic RAM/DRAM)

DRAM 必须在一定的时间内不停的刷新才能保持其中存储的数据。DRAM 只要1 只晶体管就可以实现。

DRAM保留数据的时间很短,速度也比SRAM慢,不过它还是比任何的ROM都要快,但从价格上来说DRAM相比SRAM要便宜很 多,计算机内存就是DRAM的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1241099.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

关于Flink的旁路缓存与异步操作

1. 旁路缓存 1. 什么是旁路缓存? 将数据库中的数据,比较经常访问的数据,保存起来,以减少和硬盘数据库的交互 比如: 我们使用mysql时 经常查询一个表 , 而这个表又一般不会变化,就可以放在内存中,查找时直接对内存进行查找,而不需要再和mysql交互 2. 旁路缓存例子使用 dim层…

druid keepAlive 导致数据库连接数飙升

一.背景 应用在执行完某个复杂业务&#xff0c;主要包含20几个查询SQL的操作后&#xff0c;会导致数据库连接池一直升高 druid版本&#xff1a;1.2.11 druid配置文件&#xff1a; spring.datasource.druid.maxActive100 spring.datasource.druid.initialSize20 spring.datas…

常量字符串(const)

数组名就是地址&#xff0c;str1与str2是两个不同的数组&#xff0c;虽然内容相同&#xff0c;但是地址不同&#xff0c;故为no const char * str是常量字符串&#xff0c;如果已有相同内容str3&#xff0c;则写入相同内容的str4是不会再开辟新的空间了&#xff0c;因为常量已…

3-合并区间

1题目描述 2思路 在合并区间之前&#xff0c;需要对所有的区间按照区间第一个元素进行排序&#xff0c;这样可以保证已经合并的各个区间之后不会再包含其他区间&#xff0c;或者被其他区间包含&#xff1b; 首先自己进行一下排序练习&#xff0c;回顾冒泡排序和选择排序&#…

Redis主从,缓存击穿,雪崩,哨兵等问题

Redis的性能管理&#xff1a; Redis的数据缓存在内存当中 INFO memory used_memory:853808 Redis中数据占用的内存 used_memory_rss:3715072 Redis向操作系统申请的内容 used_memory_peak:853808 Redis使用的内存的峰值 系统巡检&#xff1a;硬件巡检&#xff0c;数据库…

C语言—指针入门

内存存放数据 如果发送指令&#xff0c;读取f变量的内容&#xff0c;则先找f - >10005这个字节&#xff0c;然后再找到123。 指针和指针变量 通常说的指针就是地址的意思&#xff0c;C中有专门的指针变量存放指针。一个指针占4个字节。 定义指针变量 类型名 *指针变量名…

数组的移动

设计程序&#xff0c;给定包含N个整数的数组array&#xff0c;实现操作&#xff1a;前面各个整数顺序向后移动m个位置&#xff0c;最后的m个整数移动到最前面。方法&#xff1a;void move(int array[], int n,int m ) 输入要求 第一行输入两个整数N(1<N<1e6)和m(0<m&…

JavaEE 多线程01

为什么引入多线程? 首先进程已经能很好的完成多任务这个情景下的并发编程了,那为什么又引入多线程呢? 这是因为在一些情景下,我么需要大量的创建和销毁进程来完成一些任务,此时多进程对系统的开销就会很大了. 假设有这样一个场景,服务器同时接收到很多个服务请求,这个时候服务…

MAX/MSP SDK学习06:内存管理

提供两种内存分配方式&#xff1a;①简单指针&#xff0c;②句柄&#xff08;二级指针&#xff09;&#xff1b;官方文档建议使用前者。 // 简单指针 char *ptr; ptr sysmem_newptr(2000); post("I have a pointer %lx and it is %ld bytes in size",ptr, sysmem_p…

算法的奥秘:常见的六种算法(算法导论笔记2)

算法的奥秘&#xff1a;种类、特性及应用详解&#xff08;算法导论笔记1&#xff09; 上期总结算法的种类和大致介绍&#xff0c;这一期主要讲常见的六种算法详解以及演示。 排序算法&#xff1a; 排序算法是一类用于对一组数据元素进行排序的算法。根据不同的排序方式和时间复…

通过python脚本上传远程服务器文件到minio

前言 将文件上传到MinIO对象存储后&#xff0c;MinIO会将文件存储为对象(.meta文件)&#xff0c;并为每个对象生成相应的元数据。元数据是描述对象的属性和信息的数据。 通常&#xff0c;元数据包括对象的名称、大小、创建日期等。 在MinIO中&#xff0c;对象的元数据存储在独立…

递归回溯剪枝-子集

LCR 079. 子集 - 力扣&#xff08;LeetCode&#xff09; 方法一 1. 决策树&#xff1a;对于决策树&#xff0c;思考的角度不同&#xff0c;画出的决策树也会不同&#xff0c;这道题可以从两个角度来画决策树。 2. 考虑全局变量的使用&#xff1a; 使用全局变量 List<List&…

Modbus TCP

Modbus &#xff08;&#x1f446; 百度百科&#xff0c;放心跳转&#xff09; 起源 Modbus 由 Modicon 公司于 1979 年开发&#xff0c;是一种工业现场总线协议标准。 Modbus 通信协议具有多个变种&#xff0c;支持串口&#xff0c;以太网多个版本&#xff0c;其中最著名的…

智慧城市内涝积水监测仪功能,提升城市预防功能

内涝积水监测仪不仅改变了人们应对城市内涝的老办法&#xff0c;还让智慧城市往前迈了一大步。这个监测仪是怎么做到的呢&#xff1f;就是靠它精准的数据监测和预警&#xff0c;让城市管理有了更科学高效的解决妙招。它就像有了个聪明又负责任的助手&#xff0c;让城市管理更加…

AI虚拟主播系统+智能交互+AI词库+虚拟形象 附带完整的搭建教程

近几年电商直播带货热潮持高不跌&#xff0c;很多商家企业都会选择线上直播卖产品&#xff0c;与此同时&#xff0c;虚拟主播开始盛行&#xff0c;与真人主播相比&#xff0c;品牌虚拟主播无档期风险、离职风险、人设稳定更可控。 AI虚拟主播的不是为了取代真人主播而开发&…

AI:86-基于深度学习的街景图像地理位置识别

🚀 本文选自专栏:人工智能领域200例教程专栏 从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。 ✨✨✨ 每一个案例都附带有在本地跑过的代码,详细讲解供大家学习,希望可以帮到大家。欢迎订阅支持,正在不断更新中,…

mapBox地图第一个案例和聚合图标自定义

Mapbox地图数据平台 1.简介 Mapbox是移动的和Web应用程序的位置数据平台&#xff0c;适用于分层区位分析图&#xff0c;可自定义元素、色彩等&#xff0c;任何图层都可编辑.。Mapbox灵活的地图和位置构建块可以无缝集成到您的数据分析应用程序或数据可视化中。 平滑的矢量地…

Dubbo从入门到上天系列第十八篇:Dubbo引入Zookeeper等注册中心简介以及DubboAdmin简要介绍,为后续详解Dubbo各种注册中心做铺垫!

文章目录 一&#xff1a;Dubbo注册中心引言 1&#xff1a;什么是Dubbo的注册中心&#xff1f; 2&#xff1a;注册中心关系图解 3&#xff1a;引入注册中心服务执行流程 4&#xff1a;Dubbo注册中心好处 5&#xff1a;注册中心核心作用 二&#xff1a;注册中心实现方案 …

10.docker的网络network-概述

1.docker的网络模式 docker共有四种网路模式&#xff0c;分别是bridge、host、none和container. 1.1 bridge bridge,也称为虚拟网桥。在bridge模式下&#xff0c;为每个容器分配、配置IP等&#xff0c;并将容器连接到一个docker0。使用–network bridge命令指定&#xff0c;…

程序员指南六:数据平面开发套件

PORT HOTPLUG FRAMEWORK 端口热插拔框架为DPDK应用程序提供在运行时附加和分离端口的能力。由于该框架依赖于PMD实现&#xff0c;PMD无法处理的端口超出了该框架的范围。此外&#xff0c;在从DPDK应用程序分离端口后&#xff0c;该框架不提供从系统中移除设备的方法。对于由物…