YOLOv5结合华为诺亚VanillaNet Block模块

news2025/1/12 17:34:46

在这里插入图片描述

🗝️YOLOv5实战宝典--星级指南:从入门到精通,您不可错过的技巧

  -- 聚焦于YOLO的 最新版本对颈部网络改进、添加局部注意力、增加检测头部,实测涨点

💡 深入浅出YOLOv5:我的专业笔记与技术总结

  -- YOLOv5轻松上手, 适用技术小白,文章代码齐全,仅需 一键train,解决 YOLOv5的技术突破和创新潜能

❤️ YOLOv5创新攻略:突破技术瓶颈,激发AI新潜能"

   -- 指导独特且专业的分析, 也支持对YOLOv3、YOLOv4、YOLOv8等网络的修改

🎈 改进YOLOv5📖 ,改进点包括:    替换多种骨干网络/轻量化网络, 添加多种注意力包含自注意力/上下文注意力/自顶向下注意力机制/空间通道注意力/,设计不同的网络结构,助力涨点!!!

在这里插入图片描述

YOLOv5结合华为诺亚VanillaNet Block模块

  • 介绍
  • 核心代码
  • 加入YOLOv5
  • yaml文件:
  • 运行结果

论文: VanillaNet: the Power of Minimalism in
Deep Learning
代码: https://link.zhihu.com/?target=https%3A//github.com/huawei-noah/VanillaNet
在这里插入图片描述

介绍

  基础模型的设计哲学往往遵循“更多即更好”的原则,在计算机视觉和自然语言处理领域取得的显著成就中得到了验证。尽管如此,对于Transformer模型而言,随之而来的优化挑战和固有的复杂性也促使了向更简洁设计的转变。

  本研究引入了VanillaNet,一种在设计上追求简洁性的神经网络架构。VanillaNet避免了复杂的构建如高深度网络结构、捷径连接和自注意力机制,呈现出一种令人耳目一新的简明强大。它的每一层都经过精心设计,简洁且直接,训练后的非线性激活函数被精简,以还原至最初的简洁结构。

  VanillaNet以其对复杂性的挑战克服,成为资源受限环境下的理想选择,其易于理解和简化的构架开启了高效部署的新可能。广泛的实验结果验证了VanillaNet在图像分类、目标检测和语义分割等多项任务中可与知名的深度网络和视觉Transformer相媲美的性能,彰显了极简主义在深度学习中的潜力。VanillaNet的创新之路预示着重新定义行业格局和挑战传统模型的巨大潜力,为简洁而有效的模型设计铺开了全新的道路。

在这里插入图片描述
在这里插入图片描述
  为了解决多头自注意力(MHSA)在可扩展性方面的问题,先前的研究提出了各种稀疏注意力机制,其中查询只关注有限的键值对,而非全部。通常依赖于静态的手工设计模式或在所有查询之间共享键值对的采样子集,缺乏自适应性和独立性。

  本研究提出了VanillaNet,一种简单而高效的神经网络架构,它采用了几层卷积层,去除了所有分支,甚至包括捷径连接。通过调整VanillaNets中的层数来构建一系列网络。VanillaNet-9在保持79.87%准确率的同时,将推理速度降至2.91ms,远超ResNet-50和ConvNextV2-P。

  令人惊讶的成果突显了VanillaNet在实时处理任务中的潜力。进一步扩展了通道数量和池化大小,从而得到了VanillaNet-13-1.5׆,在ImageNet上达到了83.11%的Top-1准确率。这表明,通过简单的扩展,VanillaNets可以实现与深层网络相当的性能。不同架构的深度与推理速度的对比显示,网络的深度而非参数数量与推理速度紧密相关,强调了简单和浅层网络在实时处理任务中的巨大潜力。VanillaNet在所有考察的架构中实现了最优的速度与准确度的平衡,特别是在GPU延迟较低的情况下,表明了在充分计算能力支持下VanillaNet的卓越性🍀。

核心代码

#Copyright (C) 2023. Huawei Technologies Co., Ltd. All rights reserved.

#This program is free software; you can redistribute it and/or modify it under the terms of the MIT License.

#This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the MIT License for more details.

import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import weight_init, DropPath
from timm.models.registry import register_model


class activation(nn.ReLU):
    def __init__(self, dim, act_num=3, deploy=False):
        super(activation, self).__init__()
        self.deploy = deploy
        self.weight = torch.nn.Parameter(torch.randn(dim, 1, act_num*2 + 1, act_num*2 + 1))
        self.bias = None
        self.bn = nn.BatchNorm2d(dim, eps=1e-6)
        self.dim = dim
        self.act_num = act_num
        weight_init.trunc_normal_(self.weight, std=.02)

    def forward(self, x):
        if self.deploy:
            return torch.nn.functional.conv2d(
                super(activation, self).forward(x), 
                self.weight, self.bias, padding=(self.act_num*2 + 1)//2, groups=self.dim)
        else:
            return self.bn(torch.nn.functional.conv2d(
                super(activation, self).forward(x),
                self.weight, padding=(self.act_num*2 + 1)//2, groups=self.dim))

    def _fuse_bn_tensor(self, weight, bn):
        kernel = weight
        running_mean = bn.running_mean
        running_var = bn.running_var
        gamma = bn.weight
        beta = bn.bias
        eps = bn.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta + (0 - running_mean) * gamma / std
    
    def switch_to_deploy(self):
        kernel, bias = self._fuse_bn_tensor(self.weight, self.bn)
        self.weight.data = kernel
        self.bias = torch.nn.Parameter(torch.zeros(self.dim))
        self.bias.data = bias
        self.__delattr__('bn')
        self.deploy = True


class Block(nn.Module):
    def __init__(self, dim, dim_out, act_num=3, stride=2, deploy=False, ada_pool=None):
        super().__init__()
        self.act_learn = 1
        self.deploy = deploy
        if self.deploy:
            self.conv = nn.Conv2d(dim, dim_out, kernel_size=1)
        else:
            self.conv1 = nn.Sequential(
                nn.Conv2d(dim, dim, kernel_size=1),
                nn.BatchNorm2d(dim, eps=1e-6),
            )
            self.conv2 = nn.Sequential(
                nn.Conv2d(dim, dim_out, kernel_size=1),
                nn.BatchNorm2d(dim_out, eps=1e-6)
            )

        if not ada_pool:
            self.pool = nn.Identity() if stride == 1 else nn.MaxPool2d(stride)
        else:
            self.pool = nn.Identity() if stride == 1 else nn.AdaptiveMaxPool2d((ada_pool, ada_pool))

        self.act = activation(dim_out, act_num)
 
    def forward(self, x):
        if self.deploy:
            x = self.conv(x)
        else:
            x = self.conv1(x)
            x = torch.nn.functional.leaky_relu(x,self.act_learn)
            x = self.conv2(x)

        x = self.pool(x)
        x = self.act(x)
        return x

    def _fuse_bn_tensor(self, conv, bn):
        kernel = conv.weight
        bias = conv.bias
        running_mean = bn.running_mean
        running_var = bn.running_var
        gamma = bn.weight
        beta = bn.bias
        eps = bn.eps
        std = (running_var + eps).sqrt()
        t = (gamma 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1240491.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

VMware 系列:ESXI6.7升级7.0

ESXI6.7升级7.0 一、下载补丁二、上传文件三 启用Shell四、登录Shell后台五、删除不兼容驱动六、正常升级最近,将一台使用ESXI6.7的虚拟机升级到了7.0版本,下面记录一下自己的升级过程。 升级条件 首先确保硬件是否能升级到7.0版本,物理网卡驱动为e1000e不能升级,如果是ig…

基于单片机直流电机调速(proteus仿真+源程序)

一、系统方案 1、本设计采用这51单片机作为主控器。 2、转速值送到液晶1602显示。 3、按键设加减速,开始暂停、正反转。 二、硬件设计 原理图如下: 三、单片机软件设计 1、首先是系统初始化 en0; rw0; write_com(0x01); //lcd初始化 write_com(0x38)…

基于Haclon的Blob分析

任务要求: 请用BLOB分析的方法计算图中所有灰度值在120和255之间的像素构成的8连通区域的面积与中心点坐标。 Blob基础: 分析过程:首先获取图像,然后根据特征对原始图像进行阈值分割(区分背景像素和前景像素&#xf…

python爬虫HMAC加密案例:某企业信息查询网站

声明: 该文章为学习使用,严禁用于商业用途和非法用途,违者后果自负,由此产生的一切后果均与作者无关 一、找出需要加密的参数 js运行 atob(‘aHR0cHM6Ly93d3cucWNjLmNvbS93ZWIvc2VhcmNoP2tleT0lRTQlQjglODclRTglQkUlQkUlRTklOUI…

Django 集成 Celery 实现高效的异步任务处理

概要 在复杂的 Web 应用中,处理长时间运行的任务或定期任务是一项挑战。Django 作为一个强大的 Python Web 框架,可以通过集成 Celery 这一异步任务队列来优化这些任务的处理。Celery 不仅能提高应用性能,还能改善用户体验。本文将深入探讨如…

专业pdf编辑工具PDF Expert mac中文版特点介绍

PDF Expert mac是一款专业的PDF编辑和阅读工具。它可以帮助用户在Mac、iPad和iPhone等设备上查看、注释、编辑、填写和签署PDF文档。 PDF Expert mac软件特点 PDF编辑:PDF Expert提供了丰富的PDF编辑功能,包括添加、删除、移动、旋转、缩放、裁剪等操作…

CSM32RV003:国产高精度16位ADC低功耗RISC-V内核MCU

目录 高精度ADC工业应用工业数据采集应用CSM32RV003简介主要特性 高精度ADC工业应用 高精度ADC即高精度模数转换器,是一种能够将输入模拟信号转换为数字信号的芯片,在多种消费电子、工业、医疗和科研领域都有广泛应用。高精度ADC的主要特点是能够提供高…

《QT从基础到进阶·三十八》QWidget实现炫酷log日志打印界面

QWidget实现了log日志的打印功能,不仅可以在界面显示,还可以生成打印日志。先来看下效果,源码放在文章末尾: LogPlugin插件类管理log所有功能,它可以获取Log界面并能打印正常信息,警告信息和错误信息&…

贪心算法及相关例题

目录 什么是贪心算法? leetcode455题.分发饼干 leetcode376题.摆动序列 leetcode55题.跳跃游戏I leetcode45题.跳跃游戏II leetcode621题.任务调度器 leetcode435题.无重叠空间 leetcode135题.分发糖果 什么是贪心算法? 贪心算法更多的是一种思…

济南数字孪生赋能工业制造,加速推进制造业数字化转型

济南数字孪生赋能工业制造,加速推进制造业数字化转型。数字孪生是指通过数字模型对现实世界进行模拟和描述,从而实现数字化转型的技术。数字孪生技术通过利用先进传感与测量技术、实时数据融合及分析技术、虚拟现实技术和仿真技术,在数字空间…

HQL刷题 50道

HQL刷题 50道 尚硅谷HQL刷题网站 答案 1.查询累积销量排名第二的商品 select sku_id from (select sku_id, dense_rank() over (order by total desc) rnfrom (select sku_id, sum(sku_num) totalfrom order_detailgroup by sku_id) t1) t2 where rn 2;2.查询至少连续三天下…

分类预测 | Matlab实现基于DBN-SVM深度置信网络-支持向量机的数据分类预测

分类预测 | Matlab实现基于DBN-SVM深度置信网络-支持向量机的数据分类预测 目录 分类预测 | Matlab实现基于DBN-SVM深度置信网络-支持向量机的数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.利用DBN进行特征提取,将提取后的特征放入SVM进行分类…

【Delphi】开发IOS 程序,TLabel 中英文字对齐(水平),一行代码解决显示对齐问题!

目录 一、问题现象: 二、解决方案(一行代码解决ios对齐问题): 三、解决后效果: 四、后记: 一、问题现象: 在用 Delphi 开发ios程序时,使用TLabel控件显示,会出现中英…

《工程测量学》笔记/期末复习资料

水平角观测方法: ①测回法;②方向观测法(全圆观测法)。 比例尺精度: 图上0.1mm(肉眼能够识别的最小距离)所表示的实地距离称为“比例尺精度”。 ①尺寸小于比例尺精度的地物不需要测量&…

部署jekins遇到的问题

jdk问题 我用的jdk版本是21的结果版本太新了,启动jekins服务的时候总是报错最后在jekins的安装目录下面的jekinsErr.log查看日志发现是jdk问题最后换了一个17版本的就解决了。 unity和jekins jekins和Git源码管理 jekins和Git联动使用 我想让jekins每次打包的时…

SpringMVC(五)SpringMVC的视图

SpringMVC中的视图是View接口,视图的作用渲染数据,将模型Model中的数据展示给用户 SpringMVC视图的种类很多,默认有转发视图(InternalResourceView)和重定向视图(RedirectView) 当工程引入jstl的依赖,转发视图会自动转换为JstlV…

鸿蒙4.0开发笔记之ArkTs语言基础与基本组件结构(四)

文章声明&#xff1a;本文关于HarmonyOS系统的部分内容和描述借鉴于华为官网的“HarmonyOS开发者学堂”&#xff0c;有需要的也可以进入官网查看。<HarmonyOS第一课>ArkTS开发语言介绍 一、ArkTs语言介绍 ArkTS是鸿蒙系统&#xff08;HarmonyOS&#xff09;优选的主力应…

竞赛 : 题目:基于深度学习的水果识别 设计 开题 技术

1 前言 Hi&#xff0c;大家好&#xff0c;这里是丹成学长&#xff0c;今天做一个 基于深度学习的水果识别demo 这是一个较为新颖的竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f9ff; 更多资料, 项目分享&#xff1a; https://gitee.com/dancheng-senior/pos…

【机器学习】Nonlinear Independent Component Analysis - Aapo Hyvärinen

Linear independent component analysis (ICA) x i ( k ) ∑ j 1 n a i j s j ( k ) for all i 1 … n , k 1 … K ( ) x_i(k) \sum_{j1}^{n} a_{ij}s_j(k) \quad \text{for all } i 1 \ldots n, k 1 \ldots K \tag{} xi​(k)j1∑n​aij​sj​(k)for all i1…n,k1…K()…

如何访问linux上的web服务

1.获取服务运行端口 例如8080 2.如果时vmware 需要先配置转发端口和主机ip 主机ip需要未使用的 例如&#xff1a; 3.查看虚拟机防火墙设置 centos8 为例 &#xff1a; firewall-cmd --zonepublic --list-ports 查看放通端口 如果没有放通 firewall-cmd --zonepublic --add-p…