微软离Altman越近,离OpenAI就越远!

news2025/1/13 6:07:31

06885cd22dd02d81e558ff58c7b54f35.png

9e47f448fdbb8092d1d203618d42ee4b.png




大数据产业创新服务媒体

——聚焦数据 · 改变商业


在OpenAI这场连续剧中(之所以说是连续剧,这个事情肯定没完,后面肯定还会出续集),让我倍感意外的是,Altman刚跟OpenAI分手,“离婚手续”都还没办齐,转头就投入了微软的怀抱,火线入职微软。如果说他们之前是“清白”的,没有勾连,这谁能信。

b9bf29528599b0f9ad62de25568c17dd.png

这说明一个问题,OpenAI罢免Altman,并没有冤枉他。为什么这么说?我们来详细说道说道。

不被科技巨头控制,是OpenAI绝对的红线

我们需要回顾一下,OpenAI成立的初衷是什么?当初,马斯克和阿尔特曼等人,担心谷歌垄断人工智能,尤其是担心DeepMind率先开发出AGI,这样的技术被谷歌垄断,对人类不利。所以,几个人一合计,决定创立一个开源的、非盈利的组织,避免AGI这样的技术被谷歌这样的巨头所垄断。

担心被谷歌垄断,创立的OpenAI,后来却与微软越走越近。所以,越来越多人担心,OpenAI被微软控制。刚逃出谷歌的狼窝,转头就进入微软的虎穴,搞了半天折腾了一个寂寞,那创立OpenAI是为了什么?

所以,在OpenAI原教旨主义者(遵守《OpenAI宪章》)的一群人眼中,如果说Altman过渡商业化以及对安全风险的忽视,还可以谅解,但跟微软“眉来眼去”是绝对不能容忍的。他们不会容忍自己为人类创建AGI的果实,被微软偷偷摘了桃子。

但事实情况是,在Altman的主导下,OpenAI与微软的关系越来越暧昧。

某种程度上,OpenAI已经被微软“包了饺子”,已经成为一块“夹心饼干”。何出此言?

在目前的结构中,ChatGPT的底层算力,用的是微软云,也就是说微软云是OpenAI的底层基础设施;在上层,微软的必应、Office365等多个应用,都全面接入ChatGPT。某种程度上,微软控制了ChatGPT的商业化应用,尤其是B端商业化应用。

上层应用和下层基础设施,都被微软控制,而且微软的巨额投资还让其股份占比越来越大,OpenAI可不就是被微软“包饺子”了么?

而主导这一切的,无疑就是Altman。难怪当得知Altman被罢免时,听说微软的CEO纳德拉异常愤怒。

此次,Altman前脚刚离开OpenAI,后脚就入职微软,这要说他们之前没“奸情”,谁能信?Altman与纳德拉在推特(“X”)上的互动,看着都有点肉麻。

27b42c74117dc7e1fa43227f69306f07.png

微软离Altman越近,离OpenAI越远!

既然Altman与OpenAI闹掰了,并投入微软怀抱。那接下来一个关键的看点,就是微软怎么处理OpenAI的关系。

在探讨微软与OpenAI的未来关系时,我们可以轻松地将这场科技界的“肥皂剧”概括为两个剧本。

第一个剧本:想象一下微软扮演着一位精明的赌徒,左手拿着内部大模型的筹码,右手紧握着OpenAI的合作协议。这就是第一种可能性,其中微软在两个大牌中间游刃有余地下注。

他们会继续在Sam Altman的带领下,研发更强大的AI模型,同时也不松开与OpenAI的紧密合作。在这个方案中,微软既是OpenAI的金主又是其技术合作伙伴,同时将ChatGPT这样的黑科技紧密融入其商业战略。

第二个剧本:微软突然变脸,与OpenAI之间的关系变得岌岌可危。想象一下,微软突然撤回所有资金、算力资源,同时将ChatGPT这个曾经的明星产品从自己的业务版图中一刀切。这种情况下,微软可能会自行研发类似的技术,或者寻找新的合作伙伴,而OpenAI则需要迅速找到新的资金来源和技术支持。

不管哪种情况,微软和OpenAI的未来走向都将对整个科技界产生深远的影响。我们只能拭目以待,看看这场戏码最后会如何上演。

微软怎么做,可能很大程度上取决于OpenAI接下来的行为。OpenAI会怎么做,还有很大的不确定性,毕竟现在OpenAI还要靠金主爸爸们养活。

但是,有一点可以肯定,OpenAI与微软的蜜月期结束了。OpenAI会更加注重自己的独立性,这种独立性可能表现在三个方面:

首先,在融资这块,OpenAI将不再满足于仅仅依赖微软这一个“金主爸爸”。他们可能会像勇敢的探险家一样,走出舒适区,寻找更多的资金来源。这可能包括吸引更多风险投资者的关注,甚至敲响上市的大门。通过这些手段,OpenAI能够减少对微软的财务依赖,从而在财务上更加自立。

其次,在算力这一块,OpenAI可能会像一位智慧的农夫,不再只种一块地。他们可能考虑多云策略,既使用微软云,也采用亚马逊AWS、谷歌云等其他云服务提供商的资源。这不仅能降低对单一供应商的依赖风险,还可能带来成本效益。甚至,OpenAI也可能像个勤劳的建筑工人,自己动手,丰衣足食,建设自己的GPU计算集群。

最后,在商业化方面,OpenAI的策略可能会像一位多面手艺人,不再只依赖微软的“全家桶”。他们可能会拓宽自己的商业合作网络,与更多第三方企业合作,将自己的产品和服务,比如ChatGPT,融入到更广泛的业务场景中。这不仅能增强OpenAI的市场影响力,还能提高其产品的多样性和竞争力。

微软和OpenAI的关系,现在就像一对曾经激情四射的情侣,逐渐步入了理性的“亲情时代”。OpenAI作为这段关系中渐趋成熟的一方,明显开始寻求更多的自主权和独立性。

入职微软的Altman,能复制ChatGPT么?

还有一个问题很关键,那就是Altman加入微软,大概率做的事情跟OpenAI差不多。而且,OpenAI很可能有不少员工,会追随Altman。微软现在的态度是,要钱给钱,要人给人,要资源管够,摆出一副誓要干翻OpenAI的态势。

那么,Altman能在微软做出一个媲美甚至超越GPT-4的产品么?我对此持怀疑态度。

为什么这么说?

在Altman加入之前,微软就没有加足马里搞大模型么?显然不是,但凡微软自己能搞出一个ChatGPT这样好的产品,他会愿意受OpenAI这份气?

事实上,不仅微软,谷歌、亚马逊等一众科技巨头,哪一个不是卯足劲推进自己的大模型项目?这么久过去了,有人成功么?别说微软,就是发明了Transfomer架构的谷歌,现在自己的大模型产品都还拿不出手。

要论人才、资源,这些科技巨头哪一个不能碾压OpenAI?那他们为什么现在都拿不出媲美ChatGPT的产品?

有一个关键的原因,那就是大模型本身就是一个黑箱。别说谷歌、微软,就是OpenAI自己,让他从头走一遍,都不一定能做成现在的ChatGPT,这是他们自己承认的。

直到现在,没有任何人能搞清楚大模型具体的工作机理,更搞不清楚大模型的智能是怎么“涌现”出来的。在未来几年内,都不太可能能解开大模型的黑箱。

大模型的能力,不像是一个标准的数学函数,可以一步步的推理出来。并没有一个标准的步骤,来告诉人们怎么一步步搭建出一个GPT-4。现在的ChatGPT,有一定的“运气”成分在里面,在大量的试错中,一点点试出来的。

大模型的“黑箱”问题是来自于哪里呢?

大型神经网络模型如GPT系列的非线性和复杂的内部结构,是理解其工作机制的一大难点。这些模型包含多个处理层,每层都进行着复杂的数学运算,而层与层之间的相互作用又增加了额外的复杂性。正是这些非线性层的叠加和交互,使得模型能够从简单的输入数据中提取出复杂的模式和关联,从而执行复杂的任务,如语言理解和生成。

非线性是神经网络中的核心特征,它允许网络捕捉输入数据中的复杂、非直观的关系。每个神经元(或节点)在接收输入后,通过非线性激活函数处理信息,这些激活函数决定了信息是否及如何传递到网络的下一层。由于每个激活函数的输出不是输入的线性映射,模型能够学习并表现出高度复杂的数据表示。

然而,正是这种非线性和层间复杂的交互,也造成了理解上的困难。当上千亿个这样的非线性神经元相互作用时,理解每个单独神经元的贡献、追踪信息在网络中的具体流动路径,以及预测网络对特定输入的反应,都变得异常复杂。这不仅需要深刻的数学和编程知识,还需要对模型架构的深入理解。

因此,大型神经网络模型的非线性和复杂的内部结构,是使其成为“黑箱”的重要因素之一。这些模型虽然在处理复杂任务时显示出惊人的能力,但同时也带来了理解和解释上的重大挑战。

此外,参数量巨大、训练数据复杂,进一步加剧了“黑箱”问题。上千亿参数在训练过程中通过机器学习算法调整以优化性能,但正是因为这些参数众多且相互关联,使得理解模型的具体决策过程变得异常复杂。而数据的多样性和丰富性,意味着模型在学习过程中接触到各种各样的信息和语境,这使得追踪模型为何作出特定响应变得更加困难。

正因为大模型本身的黑箱属性,让“复制”ChatGPT并不是一个容易的事情。别说是Altman,就是现在OpenAI的几百号员工,全部转到微软去,在短期内也不太可能做出另外一个ChatGPT。

而且,说实话,Altman的优势在于融资与商业化,而不在于技术。OpenAI真正的技术大牛,是llya。而Altman这样的商业化人才,在微软简直不要太多。

如果我们真的接近AGI,那相比于被微软、谷歌这样追求商业利益最大化的科技巨头垄断,我更希望OpenAI这样的非盈利组织能够率先造出AGI。

商业公司,特别是大型科技企业,通常以利润最大化为主要目标。他们在开发AGI时可能会优先考虑商业应用和市场竞争优势。虽然这种驱动力可以推动技术的快速发展和创新,但它也可能导致某些伦理和安全问题的忽视。尤其是在竞争激烈的市场环境中,“杀红眼”了就顾不上那么多了。

相比之下,非盈利组织如OpenAI,可能更能够在其研究和发展过程中平衡商业利益和社会责任。由于非盈利性质,这样的组织可能更专注于长期的、具有变革性的目标,而不是短期的财务回报。这可能使得它们在处理AGI带来的伦理和安全问题时,更为谨慎和全面。

此外,非盈利组织在开发AGI时可能更注重透明度和包容性。他们可能更愿意与学术界、政府和公众合作,确保AGI的发展和应用是符合伦理的,并为社会大众所接受。这种开放和合作的方式可能有助于减少对AGI潜在风险的忽视,同时促进更广泛的社会利益。

最后,让我们重温一下《OpenAI宪章》里的使命——我们的首要信托责任是对人类的信托责任。

文:一蓑烟雨 / 数据猿


32b6bd738a3462eba3aed618ee87532c.jpeg

311c854468469628eb0f33534528e1b3.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1240374.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

HIEE300024R4 UAA326A04解答机器设备的研究成果

​ HIEE300024R4 UAA326A04解答机器设备的研究成果 中国的工业机器人仍然处于初级阶段,但未来前景可期 8月15日-8月19日,在北京亦庄国际会展中心举办了为期五天的2018世界机器人大会。该展会分为论坛、展览与大赛三种参览形式,而展览区由工业…

链表OJ--下

文章目录 前言一、链表分割二、环形链表I三、环形链表II四、链表的回文结构五、随机链表的复制 前言 一、链表分割 牛客网CM11:链表分割- - -点击此处传送 题解: 思路图: 代码: 二、环形链表I 力扣141:环形链表…

数据分析基础之《matplotlib(1)—介绍》

一、什么是matplotlib 1、专门用于开发2D图表(包括3D图表) 2、使用起来及其简单 3、以渐进、交互方式实现数据可视化 4、matplotlib mat:matrix(矩阵) plot:画图 lib:库 二、为什么要学习m…

【开源】基于Vue.js的高校学院网站的设计和实现

项目编号: S 020 ,文末获取源码。 \color{red}{项目编号:S020,文末获取源码。} 项目编号:S020,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 学院院系模块2.2 竞赛报名模块2.3 教…

java代码调用twitter-api用例实战

一、申请twitter开发者账号 首先先申请twitter开发者免费的API,要填写申请的内容,放心大胆地写,申请完,会提供免费的API接口。 以下是我申请到的三个免费API 申请完开始进行测试调用。 读官方文档账户认证那块:https…

摩尔定律,梅特卡夫定律,吉尔德定律

信息系统的三大定律(摩尔定律,梅特卡夫定律,吉尔德定律)有一个清晰的视角: 信息系统不是左边的生产消费系统,而是右边的交易系统,交易系统与生产消费典型的区别在于信息交易过程会产生新的信息,就像钱一样…

ChatGPT/GPT4丨编程助手;AI画图;数据分析;科研/项目实现;提示词工程技巧;论文写作等

ChatGPT 在论文写作与编程方面也具备强大的能力。无论是进行代码生成、错误调试还是解决编程难题,ChatGPT都能为您提供实用且高质量的建议和指导,提高编程效率和准确性。此外,ChatGPT是一位出色的合作伙伴,可以为您提供论文写作的…

C++ DAY08 异常

概念 异常事件(如:除 0 溢出,数组下标越界,所要读取的文件不存在 , 空指针,内存不足 等等) 在 C 语言对错误的处理是两种方法: 一是使用整型的返回值标识错误; 二是使用 errn…

Day40:139.单词拆分、背包问题总结

文章目录 139.单词拆分思路代码实现 背包问题总结背包类型递推公式 139.单词拆分 题目链接 思路 确定dp数组以及下标的含义 dp[i] : 从0开始长度为i的字符串是否可以拆分为一个或多个在字典中出现的单词确定递推公式 如果确定dp[j] 是true,且 [j, i] 这个区间的子…

php生成xml数据

在PHP中,你可以使用以下几种方法生成XML数据: 使用DOM扩展: $xml new DOMDocument(1.0, UTF-8); $root $xml->createElement(root); $xml->appendChild($root); $child $xml->createElement(child); $root->appendChild($ch…

Redis(主从复制)

主从复制: 主从复制是指在Redis中,一个主节点可以将自己的数据复制到多个从节点上,从节点会定期从主节点同步数据,从而保持数据的一致性。主从复制可以实现数据的备份和容灾,提高系统的可用性和性能。在主从复制中&am…

Tomcat实现WebSocket即时通讯 Java实现WebSocket的两种方式

HTTP协议是“请求-响应”模式,浏览器必须先发请求给服务器,服务器才会响应该请求。即服务器不会主动发送数据给浏览器。 实时性要求高的应用,如在线游戏、股票实时报价和在线协同编辑等,浏览器需实时显示服务器的最新数据&#x…

RPG项目_UI登录

首先创建一个项目 将资源包导进Resources文件夹 创建一个Scripts脚本文件夹 然后再对Scripts脚本文件夹分门别类 导入UI资源包 创建一个Image 按住Alt 选择右下角 image就会覆盖整个面板 修改image名字为BG 将image图片放置背景栏 再创建一个image 改名为MainMenu 修改MainMenu…

Django(九、cookie与session)

文章目录 一、cookie与session的介绍HTTP四大特性 cookiesession Django操作cookie三板斧基于cookie的登录功能 一、cookie与session的介绍 在讲之前我们先来回忆一下HTTP的四大特性 HTTP四大特性 1.基于请求响应 2.基于TIC、IP作用于应用层上的协议 3.无状态 保存…

Java集合拓展01

1、List,Set,Map三者的区别 List:一个有序(元素存入集合的顺序和取出的顺序一致)容器,元素可以重复,可以插入多个null元素,元素都有索引。常用的实现类有 ArrayList、LinkedList 和…

CSS画一条线

<p style"border: 1px solid rgba(0, 0, 0, 0.1);"></p> 效果&#xff1a;

【深度学习】不用Conda在PP飞桨Al Studio三个步骤安装永久PyTorch环境

在 PaddlePaddle AI Studio 中使用 Python 虚拟环境安装 PyTorch 免责声明 在阅读和实践本文提供的内容之前&#xff0c;请注意以下免责声明&#xff1a; 侵权问题: 本文提供的信息仅供学习参考&#xff0c;不用做任何商业用途&#xff0c;如造成侵权&#xff0c;请私信我&am…

JVM 之 class文件详解

目录 一. 前言 二. class文件结构 2.1. 文件格式 2.2. 魔数与版本号 2.3. 常量池 2.4. 访问标志 2.5. 类索引、父类索引和接口索引集合 2.6. 字段表集合 2.7. 方法表集合 2.8. 属性表集合 2.8.1. Code 属性表 2.8.2. Exceptions 属性 2.8.3. LineNumberTable 属性…

【C语言】深入理解指针(四)

&#x1f308;write in front :&#x1f50d;个人主页 &#xff1a; 啊森要自信的主页 ✏️真正相信奇迹的家伙&#xff0c;本身和奇迹一样了不起啊&#xff01; 欢迎大家关注&#x1f50d;点赞&#x1f44d;收藏⭐️留言&#x1f4dd;>希望看完我的文章对你有小小的帮助&am…

2、数仓理论概述与相关概念

1、问&#xff1a;数据仓库 建设过程中 经常会遇到那些问题&#xff1f; 模型(逻辑)重复建设 数据不一致性 维度不一致&#xff1a;命名、维度属性值、维度定义 指标不一致&#xff1a;命名、计算口径 数据不规范(字段命名、表名、分层、主题命名规范) 2、OneData数据建设核心方…