UVM项目笔记——通过寄存器模型实现AHB接口的寄存器读写(内含源码)

news2025/1/15 23:43:35

目录

1.前言

2.DRIVER实现

2.1 AHB二级流水时序

2.2 “队列错位法”实现driver

2.3 driver代码

2.4 仿真log与波形

2.5 多级流水拓展方法


1.前言

UVM driver在接口协议的实现中起着非常重要的作用,因为它一端处理基于类的事务级sequence,另一端处理基于时钟的信号/引脚级的总线行为。因此,如何实现 UVM driver及其与sequence的同步对于 DUT 和 UVM 环境之间的交互以及避免 UVM driver和sequence之间的任何死锁情况都是至关重要的。

而UVM reg model则提供了强大的前/后门访问寄存器的方式以便于对寄存器进行高效地配置和读取,主要是通过UVM源码中所提供的uvm_reg_map::do_bus_read、uvm_reg_map::do_bus_write方法实现,该方法的实现依赖于sequencer和adapter这2个组件。

其中adpter完全处理基于类的事务级sequence,它能够将uvm_reg_item类和uvm_sequence_item类做相互转译。通过reg2bus方法将寄存器模型能够读懂的uvm_reg_bus_op翻译为总线bus_item事务级sequence,如源码第2009行,调用adapter.reg2bus(rw_access),这一步相当于adapter充当了sequence产生bus_req transaction。

由于环境中指定了寄存器模型使用的sequencer,因此源码中第2014行将bus_req transaction交给该sequencer,随后调用start_item(),finish_item(),从而完成sequencer对sequence的仲裁及传输,确保driver能够井然有序地拿到这些transaction。

环境中打开了auto_predict功能,因此寄存器模型会根据driver返回的读取值,更新寄存器的期望值和镜像值。因此driver中要完成对读写寄存器的反馈逻辑,这一部分通常都是通过driver中的seq_item_port.item_done(bus_req)来完成的,前提是未使用adapter.provides_responses功能,在低速、简单的寄存器操作接口比如I2C、SPI、APB等,这种方式较为常见,因为对寄存器的操作不会涉及到复杂的总线行为,driver只要按顺序调用seq_item_port.get_next_item(bus_req)从sequencer拿到sequence,再将bus_req按照时序驱动到总线上,随后按顺序调用seq_item_port.item_done(bus_req)即可,这样我们是可以直接把返回信息通过req返回的。

但对于复杂的总线协议,例如AHB、AXI等,driver就必须要用put_response(bus_rsp)来返回信息。比如AHB时序中,因为读数据有可能在多拍之后才能从总线上获取,此时master早已经将发送了下一笔transaction,如果采用bus_req来返回信息,那么driver没办法模拟真实的总线行为,不能完成诸如burst类型的传输,此时必须要开启adapter.provides_responses功能。从源码第2024~2030行可以看出,一旦开启该功能,adapter的bus2reg方法会将bus_rsp而非bus_req转译为uvm_reg_bus_op类型,从而使得寄存器模型能够根据读数据正确地更新镜像值和期望值的同时,driver还能模拟真实的AHB总线行为。

本文就是从UVM的源码do_bus_read/do_bus_write出发,采用adapter.provides_responses()功能,结合rm.default_map.set_auto_predict(1)方法,通过reg_model->adapter->sequencer->driver这样的通路,实现了通过寄存器模型读写,产生AHB时序的pin级接口时序的寄存器操作接口方法。

本文将分为几个部分,分别阐述reg_model,sequence,adapter,driver的具体实现方式。

具体的环境架构如下:

2.DRIVER实现

2.1 AHB二级流水时序

在流水线总线协议中,数据传输被分解为两个或多个不同的阶段,这些阶段一个接一个地执行。通常,这些相位涉及总线上不同的信号集。以二级流水为例,driver要驱动的时序如上图。

2.2 “队列错位法”实现driver

要实现driver驱动二级流水,可以巧妙利用队列错位的方式实现。具体实现的流程图如下:

主程序主要由2个forever线程构成:

其中thread1:seq_item_port.try_next_item(req)采用非阻塞的方式从seq不断地得到数据包,得到非null数据包后将其装入队列中,因为seq产生的数据包其地址和控制信号以及写数据信号全部同相位,因此drv从seq得到的数据包其地址相和数据相是对齐的,需要拆包后分离其地址相和数据相,并且将地址和控制信号装入一个队列,数据相单独装入另一个队列。同时要将得到的req打上标签(set_id_info),克隆为rsp,用于反馈寄存器模型读数据hrdata,如果是写操作,当拍反馈rsp(即调用seq_item_port.put_response(rsp)函数),如果是读操作,需要等到vif上正确的hrdata到来后,修改rsp.hrdata,随后反馈rsp。因此,一笔由寄存器发起的read操作,最快也要2拍才能完成(hready为高时)。

thread2:drv_pkt_item(req)负责将得到的数据包按流水线的规则以及HREADY信号的高低发出,并采集读数据hrdata。当该线程被触发后,会根据3种情况判断走不同的分支:

  1. 当前trans是否为第一笔传输;
  2. 当前trans是否为一系列传输的中间传输;
  3. 当前trans是否为一系列传输的最后一笔传输;

如果为第一笔传输,则将其地址和控制相发送至总线上,数据相不发。此刻就完成了地址相和数据相的错位操作。同时将sop_cnt从1改为2,用于标记非第一笔trans。

如果为中间传输或者是最后一笔传输,则根据HREADY信号的高低将错位后的地址和控制相一并发送至总线上。

当数据队列的size>0并且地址队列的size=0时表示此时只剩下HWDATA信号没有驱动,即为最后一笔传输,只需要将写数据hwdata驱动至总线上即可,并且将sop_cnt从2改为1,用于标记下次传输为第一笔trans。

2.3 driver代码

driver的具体实现代码如下:

1.宏定义:

2.driver class:class中定义了成员变量和方法

3.main_phase:在main phase中,有2个forever进程get_pkt_item(got_pkt);drv_pkt_item();;在begin end中顺序执行。

4. thread1: 在get_pkt_item进程中,第一步,首先driver采用try_get非阻塞方法,反复从seqr获取数据,每当得到一笔非空数据包req,利用clone函数将其深复制为rsp,随后采用set_id_info方法将rsp打上标签,放入rsp_q队列中,这一步是为了将每一笔得到的数据反馈给seqr或是寄存器模型的read/write方法。第二步,将数据包拆包,其地址和控制相放入队列haddr_hctrl_q中,同时识别当前数据包是读还是写,如果是写操作,则将其写数据放入数据相队列hwdata_q中,同时立刻返还rsp(调用seq_item_port.put_response),如果是读操作,暂时不返还rsp。上述过程重复执行共2次,队列中最多存放2笔未完成的数据。

5. thread2:在drv_pkt_item()进程中,根据sop_cnt、haddr_hctrl_q队列和hwdata_q队列的size大小来识别当前trans属于第几笔传输,在第一笔传输时,只需将地址和控制相输出至总线上,在随后的传输过程中,根据HREADY信号高低决定地址控制相保留还是更新。在最后一笔传输时,只将数据相传输至总线上,并将hsel拉低。

在thread2的整个过程中,若在地址相发现为有效的读操作,则在数据相将读数据从总线上取得,并更改rsp中的hrdata,随后put_response返回给寄存器 第163~168行的代码对应UVM源码中的2028行此时若不返回rsp,则会造成do_bus_read和driver之间的死锁,仿真会在执行源码的2028行时卡死

7.完整代码:

/*
--==============================================================
-- File name      : reg_cfg_driver.sv
-- Author           : IC_SH

-- Date             : Sat Jan  7 10:36:57 CST 2023

-- Abstract         : description of this reg_cfg_driver.sv
--==============================================================
*/
`ifndef _reg_cfg_driver_sv_
`define _reg_cfg_driver_sv_

`define _HREADY hready_m
`define _HRDATA hrdata

`define haddr_hctrl_drv2bus(_HSEL,_HTRANS,_HSIZE,_HWRITE,_HADDR) \
    vif.``_HSEL``   <= temp_haddr_hctrl.``_HSEL``  ; \
    vif.``_HTRANS`` <= temp_haddr_hctrl.``_HTRANS``; \
    vif.``_HSIZE``  <= temp_haddr_hctrl.``_HSIZE`` ; \
    vif.``_HWRITE`` <= temp_haddr_hctrl.``_HWRITE``; \
    vif.``_HADDR``  <= temp_haddr_hctrl.``_HADDR`` ; \

`define hwdata_drv2bus(_HWDATA) \
    vif.``_HWDATA`` <= temp_hwdata; \

`define sample_rdata_func(_HWRITE) \
    this.got_rsp_tmp = this.got_rsp_q.pop_front(); \
    if(this.got_rsp_tmp.``_HWRITE`` == 'h0)begin \
        this.sample_rdata = 1; \
    end \

typedef class reg_cfg_driver;

virtual class reg_cfg_driver_cb extends uvm_callback;//drv callback
    virtual task before_drv_item(reg_cfg_driver drv,reg_cfg_drv_pkt pkt);
    endtask:before_drv_item

    virtual task after_drv_item(reg_cfg_driver drv,reg_cfg_drv_pkt pkt);
    endtask:after_drv_item

    function new(string name = "reg_cfg_driver_cb");
        super.new(name);
    endfunction:new

endclass:reg_cfg_driver_cb

class reg_cfg_driver extends uvm_driver #(reg_cfg_drv_pkt);
    int                      sop_cnt             ;
    uvm_event                reg_cfg_drv_finished;//used for ctrl next seq in vseq 
    virtual reg_cfg_if       vif                 ;//used for data transferring from driver to DUT
    bit                      sample_rdata        ;
    reg_cfg_config           cfg                 ;
    reg_cfg_drv_pkt          got_pkt             ;//pkt that got from seq
    reg_cfg_drv_pkt          got_rsp_q[$]        ;//pkt that got from seq
    reg_cfg_drv_pkt          got_rsp             ;//pkt that got from seq
    reg_cfg_drv_pkt          got_rsp_tmp         ;//pkt that got from seq
    reg_cfg_drv_pkt          haddr_hctrl_q[$]    ;//addr and ctrl signal queue
    logic             [31:0] hwdata_q[$]         ;//wdata queue

    reg_cfg_drv_pkt          temp_haddr_hctrl    ;
    logic             [31:0] temp_hwdata         ;

    `uvm_component_utils_begin(reg_cfg_driver)
        `uvm_field_object(cfg,UVM_ALL_ON)
        `uvm_field_object(got_pkt,UVM_ALL_ON)
        `uvm_field_object(got_rsp,UVM_ALL_ON)
        `uvm_field_object(haddr_hctrl_q[$],UVM_ALL_ON)
        `uvm_field_object(temp_haddr_hctrl,UVM_ALL_ON)
    `uvm_component_utils_end

    `uvm_register_cb(reg_cfg_driver,reg_cfg_driver_cb)


    function new(string name = "reg_cfg_driver",uvm_component parent);
        super.new(name,parent);
    endfunction:new

    function void build_phase(uvm_phase phase);
        super.build_phase(phase);
        if (!uvm_config_db #(virtual reg_cfg_if) :: get(this,"","vif",vif)) begin
            `uvm_fatal("NOVIF",{"virtual interface must be set for:",get_full_name(),".vif"})
        end
        if (!uvm_config_db #(reg_cfg_config) :: get(this,"","cfg",cfg)) begin
            `uvm_fatal("NOCFG",{"reg_cfg_config must be set for:",get_full_name(),".cfg"})
        end
        reg_cfg_drv_finished = uvm_event_pool::get_global("reg_cfg_drv_finished");
    endfunction:build_phase

    task reset_phase(uvm_phase phase);
        super.reset_phase(phase);
        reset_process();
    endtask:reset_phase

    extern virtual task main_phase(uvm_phase phase);
    extern virtual function void report_phase(uvm_phase phase);
    extern virtual task reset_process();
    extern virtual task get_pkt_item(reg_cfg_drv_pkt got_pkt);//get pkt from seq
    extern virtual task drv_pkt_item();//drive pkt to AHB bus
    extern virtual task delay_n_cyc(int N);
endclass:reg_cfg_driver

task reg_cfg_driver::main_phase(uvm_phase phase);
    process job_id;
    super.main_phase(phase);
    wait(vif.rstn === 1); // wait reset end,rst is low active
    forever begin
        fork
            begin
                job_id = process::self();
                forever begin
                    get_pkt_item(got_pkt);//forever get_pkt loop
                    drv_pkt_item();//forever drv_pkt loop
                    delay_n_cyc(1);
                end
            end
            begin
                wait(vif.rstn === 0); //detected reset
            end
        join_any //only wait rst could finish
        //kill other threads and wait reset end
        if (job_id != null) begin
            job_id.kill();
        end
        reset_process();
        if (got_pkt != null) begin
            seq_item_port.item_done();
            got_pkt = null;
        end
        wait (vif.rstn === 1);
        repeat (10) @(posedge vif.clk);
    end // forever begin
endtask:main_phase

task reg_cfg_driver::get_pkt_item(reg_cfg_drv_pkt got_pkt);
    repeat(2)begin
        if(hwdata_q.size() < 2)begin
            seq_item_port.try_next_item(got_pkt);
            //seq_item_port.get_next_item(got_pkt);
            if(got_pkt != null)begin
                $cast(this.got_rsp,got_pkt.clone());
                this.got_rsp.set_id_info(got_pkt);
                this.got_rsp_q.push_back(this.got_rsp);

                haddr_hctrl_q.push_back(got_pkt);
                if(got_pkt.hwrite == 1'b1)begin//only recieve the hwdata when hwrite == 1'b1
                    hwdata_q.push_back(got_pkt.hwdata);
                end else begin
                    hwdata_q.push_back('h0);
                end
                `uvm_info("REG_CFG_DRV",$sformatf("thread1: get pkt seq! haddr_hctrl_q.size() = %0d, hwdata_q.size() = %0d", haddr_hctrl_q.size(), hwdata_q.size()),UVM_HIGH)
                seq_item_port.item_done();
                if(this.got_rsp.hwrite == 1)begin
                    seq_item_port.put_response(this.got_rsp);
                end
                got_pkt=null;        
            end
        end
    end
endtask:get_pkt_item

task reg_cfg_driver::drv_pkt_item();
    if(this.sample_rdata == 1)begin
        this.got_rsp_tmp.`_HRDATA = vif.`_HRDATA;
        seq_item_port.put_response(this.got_rsp_tmp);
        this.sample_rdata = 0;
    end
    if((this.sop_cnt == 1) && (haddr_hctrl_q.size() > 0))begin//the first data has been drived
        temp_haddr_hctrl = haddr_hctrl_q.pop_front(); 
        `haddr_hctrl_drv2bus(hsel,htrans,hsize,hwrite,haddr)
        `uvm_info("REG_CFG_DRV","thread2: drv first seq!",UVM_HIGH)
        this.sop_cnt ++;
        `uvm_info("REG_CFG_DRV",$sformatf("thread2: sop_cnt = %0d",sop_cnt),UVM_HIGH)
    end else if((haddr_hctrl_q.size() > 0) && (haddr_hctrl_q.size() < hwdata_q.size()))begin//the middle data has been drived
        `uvm_info("REG_CFG_DRV",$sformatf("thread2: vif.hready = %0d",vif.`_HREADY),UVM_HIGH)
        if(vif.`_HREADY == 1'b1)begin
            temp_haddr_hctrl  = haddr_hctrl_q.pop_front(); 
            temp_hwdata       = hwdata_q.pop_front();
            `sample_rdata_func(hwrite)
        end
        `haddr_hctrl_drv2bus(hsel,htrans,hsize,hwrite,haddr)
        `hwdata_drv2bus(hwdata)
        `uvm_info("REG_CFG_DRV","thread2: drv middle seq!",UVM_HIGH)
    end else if((haddr_hctrl_q.size() == 0) && (hwdata_q.size() == 1))begin//the last data has been drived.
        `uvm_info("REG_CFG_DRV",$sformatf("thread2: vif.hready = %0d",vif.`_HREADY),UVM_HIGH)
        if(vif.`_HREADY == 1'b1)begin
            temp_haddr_hctrl.hsel   = 'h0;
            temp_haddr_hctrl.haddr  = 'h0;
            temp_haddr_hctrl.htrans = 'h0;
            temp_haddr_hctrl.hwrite = 'h0;
            temp_haddr_hctrl.hsize  = 'h0;
            temp_hwdata             = hwdata_q.pop_front() ;
            `sample_rdata_func(hwrite)
        end
        `haddr_hctrl_drv2bus(hsel,htrans,hsize,hwrite,haddr)
        `hwdata_drv2bus(hwdata)
        `uvm_info("REG_CFG_DRV","thread2: drv last seq!",UVM_HIGH)
        this.sop_cnt = 'h1;
        reg_cfg_drv_finished.trigger();
    end
endtask:drv_pkt_item

task reg_cfg_driver::reset_process();
    vif.hsel   <= 'h0;
    vif.haddr  <= 'h0;
    vif.htrans <= 'h0;
    vif.hwrite <= 'h0;
    vif.hsize  <= 'h0;
    vif.hwdata <= 'h0;

    sop_cnt = 'h1;
endtask:reset_process

function void reg_cfg_driver::report_phase(uvm_phase phase);
endfunction:report_phase

task reg_cfg_driver::delay_n_cyc(int N);
    repeat (N) begin @(posedge vif.clk); end
endtask:delay_n_cyc

`undef _HREADY
`undef _HRDATA
`undef haddr_hctrl_drv2bus
`undef hwdata_drv2bus
`undef sample_rdata_func
`endif

2.4 仿真log与波形

2.5 多级流水拓展方法

多级流水同样可以采取该种方法,举个例子,如果是3级流水,只需要在代码中根据haddr_hctrl_q队列和hwdata_q队列的size大小识别到第一笔传输、第二笔传输、中间传输、倒数第二笔传输、最后一笔传输,然后根据HREADY的高低决定是否更新地址和数据相即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1239943.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Wagtail-基于Python Django的内容管理系统CMS如何实现公网访问

Wagtail-基于Python Django的内容管理系统CMS实现公网访问 文章目录 Wagtail-基于Python Django的内容管理系统CMS实现公网访问前言1. 安装并运行Wagtail1.1 创建并激活虚拟环境 2. 安装cpolar内网穿透工具3. 实现Wagtail公网访问4. 固定的Wagtail公网地址 前言 Wagtail是一个…

数字化转型过程中的RPA+X与RPA+B

当前&#xff0c;RPA已成为企业数字转型初始阶段里最受欢迎的自动化解决方案&#xff0c;越来越多的企业开始引入RPA来协助员工&#xff0c;开展各类业务场景的自动化应用。很多企业也都将RPA列为重要流程优化技术&#xff0c;不少公司甚至直接放弃了传统的IT自动化方案&#x…

晶振有哪几种?晶振旁边的两个电容起什么作用?

晶振可以分为普通晶振、温补晶振、压控晶振、恒温晶振、差分晶振。 普通晶振通常用作微处理器的时钟器件&#xff0c;主要应用于那些稳定度要求不要的设备中&#xff0c;例如电视机、微波炉。 温补晶振&#xff0c;在晶振内部采取了对晶体频率、温度特性进行补偿&#xff0c;已…

sap系统连接其它系统

本文来自博客园&#xff0c;作者&#xff1a;Lovemywx2&#xff0c;转载请注明原文链接&#xff1a;https://www.cnblogs.com/1187163927ch/p/8669859.html JAVA连接ORACLE数据库 1&#xff0c;首先需要在Oracle安装完成之后新建一个用户 --新建用户 create user chenh iden…

中国最常用的制作报表的软件有哪些?

​随着信息化时代的浪潮席卷而来&#xff0c;报表制作软件已经成为了企业管理中的得力助手。在中国的大地上&#xff0c;有许多优秀的报表制作软件&#xff0c;而本文将为您揭示五位佼佼者&#xff0c;其中更以VeryReport报表软件为首选。 编辑搜图 请点击输入图片描述&#x…

centos 安装k8s教程(一键安装k8s)

第一步 准备几台机器 第二步 K8s Manager 服务器中添加docker支持 安装教程请查看这个博客 docker 安装详细教程 点我 第三步安装 KuboardSpray 教程在这里 第四步 下载k8s资源包 第五步 安装k8s 点击安装后 显示如下&#xff1a;等待完成

MAX/MSP SDK学习07:list传递

实现自定义Obejct&#xff0c;要求将传入的一组数据100后传出。 #include "ext.h" #include "ext_obex.h" typedef struct _listTrans {t_object ob;void* outLet;t_atom* fArr;long listNum;} t_listTrans;void* listTrans_new(t_symbol* s, long arg…

【GUI】-- 13 贪吃蛇小游戏之食物及成绩判断

GUI编程 04 贪吃蛇小游戏 4.4 第四步&#xff1a;食物及成绩判断 首先&#xff0c;添加食物与分数的数据定义&#xff1a; //食物的坐标int foodX;int foodY;Random random new Random();//积分面板数据结构int score;在初始化方法中&#xff0c;添加(画出)食物与分数&…

层次分析法--可以帮助你做决策的简单算法

作用 层次分析法是一个多指标的评价算法&#xff0c;主要用来在做决策时&#xff0c;给目标的多个影响因子做权重评分。特别是那些需要主观决策的、或者需要用经验判断的决策方案&#xff0c;例如&#xff1a; 买房子&#xff08;主观决策&#xff09;选择旅游地&#xff08;…

Redis事务的理解与使用

文章目录 Redis 事务1)基本认识2)事务操作1.MULTI2.EXEC3.错误处理4.DISCARD5.WATCH6.SCRIPT Redis 事务 官方文档&#xff0c;永远是你学习的第一手资料&#xff1a;Redis 事务 1)基本认识 谈到事务&#xff0c;大家首先都会联想到 mysql 中复杂但又功能强大的“事务”&…

基于element-plus定义表单配置化扩展表单按钮

文章目录 前言一、新增btn.vue组件二、使用总结如有启发&#xff0c;可点赞收藏哟~ 前言 在后台管理系统一般都存在列表查询&#xff0c;且可输入数据进行查询 基于element-plus定义表单配置化 新增按钮配置化 一、新增btn.vue组件 <template><template v-for&qu…

如何做好性能压测?压测环境设计和搭建的7个步骤你知道吗?

简介&#xff1a;一般来说&#xff0c;保证执行性能压测的环境和生产环境高度一致是执行一次有效性能压测的首要原则。有时候&#xff0c;即便是压测环境和生产环境有很细微的差别&#xff0c;都有可能导致整个压测活动评测出来的结果不准确。 1. 性能环境要考虑的要素 1.1 系…

5种社交媒体策略提升你的SEO

你希望你的网站在多大程度上在搜索结果中被更多的受众看到&#xff1f;如果你想增加你网站的曝光率和流量&#xff0c;社交媒体整合是提高你的SEO的一个好方法。为了帮助公司和网站所有者提高他们的搜索引擎优化 &#xff08;SEO&#xff09;&#xff0c;这篇文章将介绍五种社交…

易点易动设备管理系统:提升企业设备保养效率的最佳选择

在现代企业中&#xff0c;设备的正常运行和保养对于业务的顺利进行至关重要。然而&#xff0c;传统的手动设备管理方式往往效率低下、容易出错&#xff0c;给企业带来不必要的成本和风险。为了解决这一问题&#xff0c;易点易动设备管理系统应运而生。本文将介绍易点易动设备管…

ansible的基本安装

目录 一、简介 1.ansible自动化运维人工运维时代 2.自动化运维时代 3.ansible介绍 4.ansible特点 二、ansible实践 1.环境 2.ansible管理安装 3.ansible被管理安装 4.管理方式 5.添加被管理机器的ip 6.ssh密码认证方式管理 三、配置免密登录 1.ansible自带的密码…

2021年12月 Scratch(二级)真题解析#中国电子学会#全国青少年软件编程等级考试

Scratch等级考试(1~4级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 舞台上有3个角色,小猫的程序如下图所示,另外两个角色没有程序。点击绿旗,下列选项正确的是? A:小猫随鼠标移动,可能会遮挡其他两个角色 B:小猫随鼠标移动,可能会被其他两个…

前缀和的动态维护——树状数组[C/C++]

文章目录 前言lowbitlowbit的定义lowbit的计算 树状数组的思想树状数组的操作单点修改 update前缀查询 query树状数组的建立 build 前言 树状数组巧妙了利用位运算和树形结构实现了允许单点修改的情况下&#xff0c;动态维护前缀和&#xff0c;并且实现单点修改和前缀和查询的效…

2021年09月 Scratch(二级)真题解析#中国电子学会#全国青少年软件编程等级考试

Scratch等级考试(1~4级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 执行下图所示程序,舞台上的角色? A:在1秒内滑行到随机位置 B:不断地重复滑行到随机位置 C:只有按下空格键的时候,才会滑行到随机位置 D:只有按下空格键以外键的时候,才会滑行…

【鸿蒙应用ArkTS开发系列】- 云开发入门实战一使用鸿蒙登录组件实现客户端登录

目录 概述使用云端一体化开发模板创建项目工程创建登录入口页面集成登录SDK组件依赖登录组件SDK使用登录组件SDK 开启“手机号码”和“邮箱地址”认证方式 概述 通过本次课程&#xff0c;我们将学习怎么使用云端一体化开发模板来创建云开发工程&#xff0c;以及如何使用鸿蒙登…

机器学习第12天:聚类

文章目录 机器学习专栏 无监督学习介绍 聚类 K-Means 使用方法 实例演示 代码解析 绘制决策边界 本章总结 机器学习专栏 机器学习_Nowl的博客-CSDN博客 无监督学习介绍 某位著名计算机科学家有句话&#xff1a;“如果智能是蛋糕&#xff0c;无监督学习将是蛋糕本体&a…