【计算方法与科学建模】矩阵特征值与特征向量的计算(二):Jacobi 过关法及其Python实现(Jacobi 旋转法的改进)

news2025/1/18 18:53:12

文章目录

  • 一、Jacobi 旋转法
    • 1. 基本思想
    • 2. 注意事项
  • 二、Jacobi 过关法
    • 1. 基本思想
    • 2. 注意事项
  • 三、Python实现
    • 迭代过程(调试)

  矩阵的特征值(eigenvalue)和特征向量(eigenvector)在很多应用中都具有重要的数学和物理意义。Jacobi 旋转法是一种用于计算对称矩阵特征值和特征向量的迭代方法,Jacobi 过关法是 Jacobi 旋转法的一种改进版本,其主要目的是减少计算工作和提高运行速度。

  本文将详细介绍Jacobi 过关法的基本原理和步骤,并给出其Python实现。

一、Jacobi 旋转法

  Jacobi 旋转法的每一次迭代中,需要选择一个非对角元素最大的位置,然后构造相应的旋转矩阵,进行相似变换,使得矩阵逐渐对角化。

  • 对称矩阵是一个实数矩阵,其转置与自身相等。
  • 对于一个方阵 A A A,如果存在标量 λ λ λ 和非零向量 v v v,使得 A v = λ v Av = λv Av=λv,那么 λ λ λ 就是 A A A 的特征值, v v v 就是对应于 λ λ λ 的特征向量。

1. 基本思想

  Jacobi 旋转法的基本思想是通过一系列的相似变换,逐步将对称矩阵对角化,使得非对角元素趋于零。这个过程中,特征值逐渐浮现在对角线上,而相应的特征向量也被逐步找到。下面是 Jacobi 旋转法的基本步骤:

  1. 选择旋转角度: 选择一个旋转角度 θ,通常使得旋转矩阵中的非对角元素为零,从而实现对角化,通常选择非对角元素中绝对值最大的那个作为旋转的目标。

  2. 构造旋转矩阵: 构造一个旋转矩阵 J,该矩阵为单位矩阵,只有对应于选择的非对角元素的位置上有两个非零元素,其余位置上为零。这两个非零元素的值由旋转角度 θ 决定,例如,对于 2x2 矩阵,旋转矩阵可以表示为:
    J = [ cos ⁡ ( θ ) − sin ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) ] J = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} J=[cos(θ)sin(θ)sin(θ)cos(θ)]

  3. 相似变换: 计算相似变换矩阵 P P P,即 P T A P P^TAP PTAP,其中 A A A 是原始矩阵, P P P 是旋转矩阵,计算过程如下:

P T A P = [ cos ⁡ ( θ ) sin ⁡ ( θ ) − sin ⁡ ( θ ) cos ⁡ ( θ ) ] T [ a 11 a 12 a 12 a 22 ] [ cos ⁡ ( θ ) − sin ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) ] P^TAP = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}^T \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} PTAP=[cos(θ)sin(θ)sin(θ)cos(θ)]T[a11a12a12a22][cos(θ)sin(θ)sin(θ)cos(θ)]

  通过矩阵相乘计算,我们可以得到 P T A P P^TAP PTAP 中的非对角元素,假设这两个元素分别位于矩阵的 (1,2) 和 (2,1) 的位置。令 a i j a_{ij} aij 为这两个元素,即 a i j = a 12 = a 21 a_{ij}= a_{12} = a_{21} aij=a12=a21

  接下来,我们希望通过选择合适的 θ \theta θ使得 a i j a_{ij} aij 变为零,从而达到对角化的目的,即 a 12 = a 21 a_{12} = a_{21} a12=a21,进一步可推导出

θ = 1 2 arctan ⁡ ( 2 ⋅ a i j a i i − a j j ) \theta = \frac{1}{2} \arctan\left(\frac{2 \cdot a_{ij}}{a_{ii} - a_{jj}}\right) θ=21arctan(aiiajj2aij)

  • a i i = a j j a_{ii}=a_{jj} aii=ajj,则使用 a r c c o t arccot arccot形式
  1. 迭代: 重复步骤 1-3,直到矩阵 A 的非对角元素都趋于零或满足一定的精度要求。

  2. 提取特征值和特征向量: 对角线上的元素即为矩阵 A 的特征值,而 P 中的列向量即为对应于这些特征值的特征向量。

2. 注意事项

  Jacobi 旋转法的优点是可以用于任意大小的对称矩阵,但其缺点是迭代次数较多,计算量较大。在实际应用中,通常会结合其他方法来提高计算效率。

二、Jacobi 过关法

  Jacobi 过关法(Jacobi’s threshold method)是 Jacobi 旋转法的一种改进版本,其主要目的是减少计算工作和提高运行速度。该方法通过动态调整阈值,并根据阈值对非对角元素进行选择性的旋转变换,以逐步对角化对称矩阵。

1. 基本思想

  1. 计算非对角元素平方和: 对于对称矩阵 A A A,计算其非对角元素平方和,表示为 u ( A ) u(A) u(A)。然后取平方根,得到 r ( A ) = u ( A ) r(A) = \sqrt{u(A)} r(A)=u(A)

  2. 设定初始阈值 θ \theta θ 预先设定一个初始阈值 θ 0 \theta_0 θ0

  3. 扫描非对角元素: 对于 a i j a_{ij} aij 其中 i ≠ j i \neq j i=j,扫描矩阵的上三角或下三角部分。

  4. 进行选择性旋转变换: 对于绝对值大于当前阈值 $\theta $的非对角元素 a i j a_{ij} aij,进行 Jacobi 旋转变换,将其旋转为零。旋转变换的具体步骤如下:

    • 选择旋转角度 ϕ \phi ϕ,通常通过 tan ⁡ ( 2 ϕ ) = 2 a i j a i i − a j j \tan(2\phi) = \frac{2a_{ij}}{a_{ii} - a_{jj}} tan(2ϕ)=aiiajj2aij计算。
    • 构造旋转矩阵 J J J,其中除了 J i i J_{ii} Jii J j j J_{jj} Jjj 外的元素都为零,而 J i j J_{ij} Jij J j i J_{ji} Jji 元素由 cos ⁡ ( ϕ ) \cos(\phi) cos(ϕ) − sin ⁡ ( ϕ ) -\sin(\phi) sin(ϕ)决定。
    • 执行相似变换 A = J T A J A = J^T A J A=JTAJ
  5. 调整阈值 θ \theta θ 当所有非对角元素的绝对值都小于当前阈值 θ \theta θ 时,缩小阈值,即 θ i + 1 = γ ⋅ θ i \theta_{i+1} = \gamma \cdot \theta_i θi+1=γθi,其中 γ \gamma γ 是一个缩小因子。

  6. 重复步骤 3-5: 重复上述步骤,直到满足某个收敛条件,例如 θ k < ϵ \theta_k < \epsilon θk<ϵ,其中 ϵ \epsilon ϵ是一个很小的正数。

2. 注意事项

  通过不断调整阈值并选择性地进行旋转变换,Jacobi 过关法逐渐减小非对角元素的绝对值,以达到更好的数值稳定性。这种方法的优点在于,通过智能地选择非对角元素进行变换,可以有效减少迭代次数,提高计算效率。

三、Python实现

import numpy as np


def jacobi_threshold_method(A, epsilon=1e-10, gamma=0.9):
    n = A.shape[0]
    theta = np.sqrt(np.sum(np.abs(np.triu(A, k=1)) ** 2))
    eigenvectors = np.eye(n)

    while theta > epsilon:
        for i in range(n):
            for j in range(i + 1, n):
                if np.abs(A[i, j]) > theta:
                    # 计算旋转角度
                    phi = 0.5 * np.arctan2(2 * A[i, j], A[i, i] - A[j, j])

                    # 构造旋转矩阵
                    J = np.eye(n)
                    J[i, i] = J[j, j] = np.cos(phi)
                    J[i, j] = -np.sin(phi)
                    J[j, i] = np.sin(phi)

                    # 执行相似变换
                    A = np.dot(np.dot(J.T, A), J)

                    # 更新特征向量
                    eigenvectors = np.dot(eigenvectors, J)

        # 缩小阈值
        theta *= gamma

    # 提取特征值和特征向量
    eigenvalues = np.diag(A)

    return eigenvalues, eigenvectors


# 示例矩阵
A = np.array([[2, -1, 0], [-1, 2, -1], [0, -1, 2]])

# 执行 Jacobi 过关法
eigenvalues, eigenvectors = jacobi_threshold_method(A)

print("特征值:", eigenvalues)
print("特征向量:")
np.set_printoptions(precision=4, suppress=True)
print(eigenvectors)

在这里插入图片描述

迭代过程(调试)

  • 第一次:

在这里插入图片描述

在这里插入图片描述

………

  • final:
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1239228.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2023.11.22 homework

七年级数学 五年级数学 也不知道可以教到几年级&#xff0c;估计很快就教不动了。人生啊。

地图导航测试用例,你get了吗?

地图导航是我们经常使用的工具&#xff0c;能帮助我们指引前进的方向。 接下来&#xff0c;会从功能测试、UI测试、兼容测试、安全测试、网络测试、性能测试、易用性测试、文档和国际化语言测试8个方面来编写地图导航测试用例。 一 功能测试 输入起点和终点&#xff0c;验证…

五大资源之Service(可以固定IP)

Service可以看作是一组同类Pod对外访问接口,借助Service应用可以方便的实现服务发现与负载均衡 创建集群内部可以访问Service #暴露Service(也创建在了namespace dev下) [root@master ~]# kubectl expose deployment(pod控制器) nginx --name=svc-nginx1 --type=Cluste…

实在智能携“TARS大模型”入选“2023中国数据智能产业AI大模型先锋企业”

近日&#xff0c;由数据猿与上海大数据联盟联合主办的“2023企业数智化转型升级发展论坛”在上海圆满收官。 论坛颁奖典礼上&#xff0c;《2023中国数据智能产业AI大模型先锋企业》等六大榜单正式揭晓&#xff0c;旨在表彰在AI领域为数智化升级取得卓越成就和突出贡献的企业&am…

最新PHP熊猫头图片表情斗图生成源码

这是一款能生成熊猫头表情斗图的自适应系统源码&#xff0c;无论是在电脑还是手机上都可以正常使用&#xff01;这个源码集成了搜狗搜索图片接口&#xff0c;可以轻松地一键搜索数百万张图片&#xff0c;并且还包含了表情制作等功能模块。对于一些新站来说&#xff0c;这是一个…

代码规范之-理解ESLint、Prettier、EditorConfig

前言 团队多人协同开发项目&#xff0c;困扰团队管理的一个很大的问题就是&#xff1a;无可避免地会出现每个开发者编码习惯不同、代码风格迥异&#xff0c;为了代码高可用、可维护性&#xff0c;需要从项目管理上尽量统一和规范代码。理想的方式需要在项目工程化方面&#xff…

元素清空操作clear与选择操作check

元素清空操作clear与选择操作check clear() 作用 清空输入框的所有内容.clear() 等价于 .type("{selectall}{backspace}") 语法 .clear() .clear(options)option选项 元素选中操作check与uncheck check 语法 // 所有匹配到的选择框都会被选中一遍 .check()/…

【HarmonyOS】元服务卡片本地启动拉起加桌没问题,上架后拉起加桌时卡片展示异常

【关键字】 加桌选卡展示异常 、 2卡共用一个布局 、 代码混淆 【问题现象】 元服务卡片在本地启动拉起加桌时&#xff0c;多卡的选卡过程显示是没问题的。但是在上架后拉起加桌时&#xff0c;多卡的选卡过程卡片展示异常。 代码逻辑是通过创建卡片的时候判断卡片的尺寸大小…

Web前端—移动Web第四天(vw适配方案、vw和vh的基本使用、综合案例-酷我音乐)

版本说明 当前版本号[20231122]。 版本修改说明20231122初版 目录 文章目录 版本说明目录移动 Web 第四天01-vw适配方案vw和vh基本使用vw布局vh布局混用问题 02-综合案例-酷我音乐准备工作头部布局头部内容搜索区域banner 区域标题公共样式排行榜内容推荐歌单布局推荐歌单内…

生活如果真能像队列一样的话

生活如果真能像队列一样&#xff0c;那该多好啊。 —————————————————————————————————————————— 背包&#xff0c;队列 可以先看他们的API&#xff1a;都含有一个无参构造函数&#xff0c;添加单个元素的方法&#xff0c;测试集合…

自动化测试 —— 元素定位

1.什么是自动化测试 自动化测试的概念:软件自动化测试就是通过测试工具或者其他手段&#xff0c;按照测试人员的预定计划对软件产品进行自动化测试&#xff0c;他是软件测试的一个重要组成部分&#xff0c;能够完成许多手工测试无法完成或者难以实现的测试工作&#xff0c;正确…

带记忆的超级GPT智能体,能做饭、煮咖啡、整理家务!

随着AI技术的快速迭代&#xff0c;Alexa、Siri、小度、天猫精灵等语音助手得到了广泛应用。但在自然语言理解和完成复杂任务方面仍然有限。 相比文本的标准格式&#xff0c;语音充满复杂性和多样性&#xff08;例如&#xff0c;地方话&#xff09;,传统方法很难适应不同用户的…

【C++初阶】STL详解(五)List的介绍与使用

本专栏内容为&#xff1a;C学习专栏&#xff0c;分为初阶和进阶两部分。 通过本专栏的深入学习&#xff0c;你可以了解并掌握C。 &#x1f493;博主csdn个人主页&#xff1a;小小unicorn ⏩专栏分类&#xff1a;C &#x1f69a;代码仓库&#xff1a;小小unicorn的代码仓库&…

盖雅绩效应用通过SAP认证并斩获创新方案奖

近日&#xff0c;在「不啻微芒 造炬成阳」为主题的SAP合作伙伴创新大赛上&#xff0c;盖雅工场「G移动绩效创新方案」荣获创新解决方案奖。该方案核心是一款基于SAP SuccessFactors套件及SAP BTP平台的扩展应用&#xff0c;主要针对一线人员绩效管理场景&#xff0c;借助简洁的…

[autojs]autojs开关按钮的简单使用

"ui"; ui.layout(<vertical><Switch id"autoService" text"无障碍服务"checked"false"textSize"15sp"/><button text"第二个按钮"/></vertical> ); ui.autoService.on("check"…

小微初创企业,如何利用媒体宣传快速成长

传媒如春雨&#xff0c;润物细无声&#xff0c;大家好&#xff0c;我是51媒体网胡老师。 对于小微初创企业来说&#xff0c;利用媒体宣传可以快速提升品牌知名度、扩大影响力&#xff0c;进而促进企业的成长。 1.确定宣传目标&#xff1a;是增加销售、提升品牌知名度、还是推…

Less精简直接上手,纯干货教程

目录 介绍 安装插件 入门使用测试 ​编辑 less变量 介绍 less作为一门CSS扩展语言&#xff0c;也就是说CSS预处理器。&#xff08;Leaner Style Sheets&#xff09;简称less&#xff0c;它只不过是为css新增这些的功能&#xff0c;比如说&#xff1a;变量、函数、作用域等等…

利用Python进行数据分析【送书第六期:文末送书】

&#x1f468;‍&#x1f393;博主简介 &#x1f3c5;云计算领域优质创作者   &#x1f3c5;华为云开发者社区专家博主   &#x1f3c5;阿里云开发者社区专家博主 &#x1f48a;交流社区&#xff1a;运维交流社区 欢迎大家的加入&#xff01; &#x1f40b; 希望大家多多支…

Unity中Shader双向反射分布函数BRDF

文章目录 前言一、渲染方程二、什么是BxDF1、BSSRDF2、BRDF3、BTDF4、BSDF 三、迪士尼原则的BRDF四、迪士尼原则的BRDF的参数五、在Unity中看一下默认Shader的这些参数六、在这里记录一下使用 Blender 和 SubstancePainter 的流程1、在Blender中导出模型为 .obj 格式2、在Subst…