卷积神经网络(ResNet-50)鸟类识别

news2024/11/17 9:53:08

文章目录

  • 卷积神经网络(CNN)mnist手写数字分类识别的实现
  • 卷积神经网络(CNN)多种图片分类的实现
  • 卷积神经网络(CNN)衣服图像分类的实现
  • 卷积神经网络(CNN)鲜花的识别
  • 卷积神经网络(CNN)天气识别
  • 卷积神经网络(VGG-16)海贼王人物识别
  • 卷积神经网络(VGG-19)灵笼人物识别
  • 前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
      • 我的环境:
    • 2. 导入数据
    • 3. 查看数据
  • 二、数据预处理
    • 1. 加载数据
    • 2. 可视化数据
    • 3. 再次检查数据
    • 4. 配置数据集
  • 三、残差网络(ResNet)介绍
    • 1. 残差网络解决了什么
    • 2. ResNet-50介绍
  • 四、构建ResNet-50网络模型
  • 五、编译
  • 六、训练模型
  • 六、模型评估
  • 八、保存and加载模型
  • 九、预测

卷积神经网络(CNN)mnist手写数字分类识别的实现

卷积神经网络(CNN)多种图片分类的实现

卷积神经网络(CNN)衣服图像分类的实现

卷积神经网络(CNN)鲜花的识别

卷积神经网络(CNN)天气识别

卷积神经网络(VGG-16)海贼王人物识别

卷积神经网络(VGG-19)灵笼人物识别

前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1
import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpus[0]],"GPU")

2. 导入数据

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

import os,PIL

# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)

# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)

from tensorflow import keras
from tensorflow.keras import layers,models

import pathlib
data_dir = "weather_photos/"
data_dir = pathlib.Path(data_dir)

3. 查看数据

image_count = len(list(data_dir.glob('*/*')))

print("图片总数为:",image_count)

二、数据预处理

文件夹数量
Bananaquit166 张
Black Throated Bushtiti111 张
Black skimmer122 张
Cockatoo166张

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

batch_size = 32
img_height = 224
img_width = 224
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 565 files belonging to 4 classes.
Using 452 files for training.
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 565 files belonging to 4 classes.
Using 113 files for validation.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)
['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']

2. 可视化数据

plt.figure(figsize=(10, 5))  # 图形的宽为10高为5

for images, labels in train_ds.take(1):
    for i in range(8):
        
        ax = plt.subplot(2, 4, i + 1)  

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

在这里插入图片描述

plt.imshow(images[1].numpy().astype("uint8"))

在这里插入图片描述

3. 再次检查数据

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
(8, 224, 224, 3)
(8,)
  • Image_batch是形状的张量(8, 224, 224, 3)。这是一批形状240x240x3的8张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(8,)的张量,这些标签对应8张图片

4. 配置数据集

AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

三、残差网络(ResNet)介绍

1. 残差网络解决了什么

残差网络是为了解决神经网络隐藏层过多时,而引起的网络退化问题。退化(degradation)问题是指:当网络隐藏层变多时,网络的准确度达到饱和然后急剧退化,而且这个退化不是由于过拟合引起的。

拓展: 深度神经网络的“两朵乌云”

  • 梯度弥散/爆炸

简单来讲就是网络太深了,会导致模型训练难以收敛。这个问题可以被标准初始化和中间层正规化的方法有效控制。(现阶段知道这么一回事就好了)

  • 网络退化

随着网络深度增加,网络的表现先是逐渐增加至饱和,然后迅速下降,这个退化不是由于过拟合引起的。

2. ResNet-50介绍

ResNet-50有两个基本的块,分别名为Conv BlockIdentity Block

在这里插入图片描述
在这里插入图片描述

四、构建ResNet-50网络模型

下面是本文的重点,可以试着按照上面三张图自己构建一下ResNet-50

from keras import layers

from keras.layers import Input,Activation,BatchNormalization,Flatten
from keras.layers import Dense,Conv2D,MaxPooling2D,ZeroPadding2D,AveragePooling2D
from keras.models import Model

def identity_block(input_tensor, kernel_size, filters, stage, block):

    filters1, filters2, filters3 = filters

    name_base = str(stage) + block + '_identity_block_'

    x = Conv2D(filters1, (1, 1), name=name_base + 'conv1')(input_tensor)
    x = BatchNormalization(name=name_base + 'bn1')(x)
    x = Activation('relu', name=name_base + 'relu1')(x)

    x = Conv2D(filters2, kernel_size,padding='same', name=name_base + 'conv2')(x)
    x = BatchNormalization(name=name_base + 'bn2')(x)
    x = Activation('relu', name=name_base + 'relu2')(x)

    x = Conv2D(filters3, (1, 1), name=name_base + 'conv3')(x)
    x = BatchNormalization(name=name_base + 'bn3')(x)

    x = layers.add([x, input_tensor] ,name=name_base + 'add')
    x = Activation('relu', name=name_base + 'relu4')(x)
    return x


def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):

    filters1, filters2, filters3 = filters

    res_name_base = str(stage) + block + '_conv_block_res_'
    name_base = str(stage) + block + '_conv_block_'

    x = Conv2D(filters1, (1, 1), strides=strides, name=name_base + 'conv1')(input_tensor)
    x = BatchNormalization(name=name_base + 'bn1')(x)
    x = Activation('relu', name=name_base + 'relu1')(x)

    x = Conv2D(filters2, kernel_size, padding='same', name=name_base + 'conv2')(x)
    x = BatchNormalization(name=name_base + 'bn2')(x)
    x = Activation('relu', name=name_base + 'relu2')(x)

    x = Conv2D(filters3, (1, 1), name=name_base + 'conv3')(x)
    x = BatchNormalization(name=name_base + 'bn3')(x)

    shortcut = Conv2D(filters3, (1, 1), strides=strides, name=res_name_base + 'conv')(input_tensor)
    shortcut = BatchNormalization(name=res_name_base + 'bn')(shortcut)

    x = layers.add([x, shortcut], name=name_base+'add')
    x = Activation('relu', name=name_base+'relu4')(x)
    return x

def ResNet50(input_shape=[224,224,3],classes=1000):

    img_input = Input(shape=input_shape)
    x = ZeroPadding2D((3, 3))(img_input)

    x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)
    x = BatchNormalization(name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x =     conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

    x =     conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

    x =     conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')

    x =     conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

    x = AveragePooling2D((7, 7), name='avg_pool')(x)

    x = Flatten()(x)
    x = Dense(classes, activation='softmax', name='fc1000')(x)

    model = Model(img_input, x, name='resnet50')
    
    # 加载预训练模型
    model.load_weights("resnet50_weights_tf_dim_ordering_tf_kernels.h5")

    return model

model = ResNet50()
model.summary()
Model: "resnet50"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            [(None, 224, 224, 3) 0                                            
__________________________________________________________________________________________________
zero_padding2d (ZeroPadding2D)  (None, 230, 230, 3)  0           input_1[0][0]                    
__________________________________________________________________________________________________
conv1 (Conv2D)                  (None, 112, 112, 64) 9472        zero_padding2d[0][0]             
__________________________________________________________________________________________________
bn_conv1 (BatchNormalization)   (None, 112, 112, 64) 256         conv1[0][0]                      
__________________________________________________________________________________________________
activation (Activation)         (None, 112, 112, 64) 0           bn_conv1[0][0]                   
__________________________________________________________________________________________________
max_pooling2d (MaxPooling2D)    (None, 55, 55, 64)   0           activation[0][0]                 
__________________________________________________________________________________________________
2a_conv_block_conv1 (Conv2D)    (None, 55, 55, 64)   4160        max_pooling2d[0][0]              
__________________________________________________________________________________________________
2a_conv_block_bn1 (BatchNormali (None, 55, 55, 64)   256         2a_conv_block_conv1[0][0]        
__________________________________________________________________________________________________
2a_conv_block_relu1 (Activation (None, 55, 55, 64)   0           2a_conv_block_bn1[0][0]          
__________________________________________________________________________________________________
2a_conv_block_conv2 (Conv2D)    (None, 55, 55, 64)   36928       2a_conv_block_relu1[0][0]        
__________________________________________________________________________________________________
2a_conv_block_bn2 (BatchNormali (None, 55, 55, 64)   256         2a_conv_block_conv2[0][0]        
__________________________________________________________________________________________________
2a_conv_block_relu2 (Activation (None, 55, 55, 64)   0           2a_conv_block_bn2[0][0]          
__________________________________________________________________________________________________
2a_conv_block_conv3 (Conv2D)    (None, 55, 55, 256)  16640       2a_conv_block_relu2[0][0]        
__________________________________________________________________________________________________
2a_conv_block_res_conv (Conv2D) (None, 55, 55, 256)  16640       max_pooling2d[0][0]              
__________________________________________________________________________________________________
2a_conv_block_bn3 (BatchNormali (None, 55, 55, 256)  1024        2a_conv_block_conv3[0][0]        
__________________________________________________________________________________________________
2a_conv_block_res_bn (BatchNorm (None, 55, 55, 256)  1024        2a_conv_block_res_conv[0][0]     
__________________________________________________________________________________________________
2a_conv_block_add (Add)         (None, 55, 55, 256)  0           2a_conv_block_bn3[0][0]          
                                                                 2a_conv_block_res_bn[0][0]       
__________________________________________________________________________________________________
2a_conv_block_relu4 (Activation (None, 55, 55, 256)  0           2a_conv_block_add[0][0]          
__________________________________________________________________________________________________
2b_identity_block_conv1 (Conv2D (None, 55, 55, 64)   16448       2a_conv_block_relu4[0][0]        
__________________________________________________________________________________________________
2b_identity_block_bn1 (BatchNor (None, 55, 55, 64)   256         2b_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
2b_identity_block_relu1 (Activa (None, 55, 55, 64)   0           2b_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
2b_identity_block_conv2 (Conv2D (None, 55, 55, 64)   36928       2b_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
2b_identity_block_bn2 (BatchNor (None, 55, 55, 64)   256         2b_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
2b_identity_block_relu2 (Activa (None, 55, 55, 64)   0           2b_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
2b_identity_block_conv3 (Conv2D (None, 55, 55, 256)  16640       2b_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
2b_identity_block_bn3 (BatchNor (None, 55, 55, 256)  1024        2b_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
2b_identity_block_add (Add)     (None, 55, 55, 256)  0           2b_identity_block_bn3[0][0]      
                                                                 2a_conv_block_relu4[0][0]        
__________________________________________________________________________________________________
2b_identity_block_relu4 (Activa (None, 55, 55, 256)  0           2b_identity_block_add[0][0]      
__________________________________________________________________________________________________
2c_identity_block_conv1 (Conv2D (None, 55, 55, 64)   16448       2b_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
2c_identity_block_bn1 (BatchNor (None, 55, 55, 64)   256         2c_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
2c_identity_block_relu1 (Activa (None, 55, 55, 64)   0           2c_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
2c_identity_block_conv2 (Conv2D (None, 55, 55, 64)   36928       2c_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
2c_identity_block_bn2 (BatchNor (None, 55, 55, 64)   256         2c_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
2c_identity_block_relu2 (Activa (None, 55, 55, 64)   0           2c_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
2c_identity_block_conv3 (Conv2D (None, 55, 55, 256)  16640       2c_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
2c_identity_block_bn3 (BatchNor (None, 55, 55, 256)  1024        2c_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
2c_identity_block_add (Add)     (None, 55, 55, 256)  0           2c_identity_block_bn3[0][0]      
                                                                 2b_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
2c_identity_block_relu4 (Activa (None, 55, 55, 256)  0           2c_identity_block_add[0][0]      
__________________________________________________________________________________________________
3a_conv_block_conv1 (Conv2D)    (None, 28, 28, 128)  32896       2c_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
3a_conv_block_bn1 (BatchNormali (None, 28, 28, 128)  512         3a_conv_block_conv1[0][0]        
__________________________________________________________________________________________________
3a_conv_block_relu1 (Activation (None, 28, 28, 128)  0           3a_conv_block_bn1[0][0]          
__________________________________________________________________________________________________
3a_conv_block_conv2 (Conv2D)    (None, 28, 28, 128)  147584      3a_conv_block_relu1[0][0]        
__________________________________________________________________________________________________
3a_conv_block_bn2 (BatchNormali (None, 28, 28, 128)  512         3a_conv_block_conv2[0][0]        
__________________________________________________________________________________________________
3a_conv_block_relu2 (Activation (None, 28, 28, 128)  0           3a_conv_block_bn2[0][0]          
__________________________________________________________________________________________________
3a_conv_block_conv3 (Conv2D)    (None, 28, 28, 512)  66048       3a_conv_block_relu2[0][0]        
__________________________________________________________________________________________________
3a_conv_block_res_conv (Conv2D) (None, 28, 28, 512)  131584      2c_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
3a_conv_block_bn3 (BatchNormali (None, 28, 28, 512)  2048        3a_conv_block_conv3[0][0]        
__________________________________________________________________________________________________
3a_conv_block_res_bn (BatchNorm (None, 28, 28, 512)  2048        3a_conv_block_res_conv[0][0]     
__________________________________________________________________________________________________
3a_conv_block_add (Add)         (None, 28, 28, 512)  0           3a_conv_block_bn3[0][0]          
                                                                 3a_conv_block_res_bn[0][0]       
__________________________________________________________________________________________________
3a_conv_block_relu4 (Activation (None, 28, 28, 512)  0           3a_conv_block_add[0][0]          
__________________________________________________________________________________________________
3b_identity_block_conv1 (Conv2D (None, 28, 28, 128)  65664       3a_conv_block_relu4[0][0]        
__________________________________________________________________________________________________
3b_identity_block_bn1 (BatchNor (None, 28, 28, 128)  512         3b_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
3b_identity_block_relu1 (Activa (None, 28, 28, 128)  0           3b_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
3b_identity_block_conv2 (Conv2D (None, 28, 28, 128)  147584      3b_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
3b_identity_block_bn2 (BatchNor (None, 28, 28, 128)  512         3b_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
3b_identity_block_relu2 (Activa (None, 28, 28, 128)  0           3b_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
3b_identity_block_conv3 (Conv2D (None, 28, 28, 512)  66048       3b_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
3b_identity_block_bn3 (BatchNor (None, 28, 28, 512)  2048        3b_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
3b_identity_block_add (Add)     (None, 28, 28, 512)  0           3b_identity_block_bn3[0][0]      
                                                                 3a_conv_block_relu4[0][0]        
__________________________________________________________________________________________________
3b_identity_block_relu4 (Activa (None, 28, 28, 512)  0           3b_identity_block_add[0][0]      
__________________________________________________________________________________________________
3c_identity_block_conv1 (Conv2D (None, 28, 28, 128)  65664       3b_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
3c_identity_block_bn1 (BatchNor (None, 28, 28, 128)  512         3c_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
3c_identity_block_relu1 (Activa (None, 28, 28, 128)  0           3c_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
3c_identity_block_conv2 (Conv2D (None, 28, 28, 128)  147584      3c_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
3c_identity_block_bn2 (BatchNor (None, 28, 28, 128)  512         3c_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
3c_identity_block_relu2 (Activa (None, 28, 28, 128)  0           3c_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
3c_identity_block_conv3 (Conv2D (None, 28, 28, 512)  66048       3c_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
3c_identity_block_bn3 (BatchNor (None, 28, 28, 512)  2048        3c_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
3c_identity_block_add (Add)     (None, 28, 28, 512)  0           3c_identity_block_bn3[0][0]      
                                                                 3b_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
3c_identity_block_relu4 (Activa (None, 28, 28, 512)  0           3c_identity_block_add[0][0]      
__________________________________________________________________________________________________
3d_identity_block_conv1 (Conv2D (None, 28, 28, 128)  65664       3c_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
3d_identity_block_bn1 (BatchNor (None, 28, 28, 128)  512         3d_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
3d_identity_block_relu1 (Activa (None, 28, 28, 128)  0           3d_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
3d_identity_block_conv2 (Conv2D (None, 28, 28, 128)  147584      3d_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
3d_identity_block_bn2 (BatchNor (None, 28, 28, 128)  512         3d_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
3d_identity_block_relu2 (Activa (None, 28, 28, 128)  0           3d_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
3d_identity_block_conv3 (Conv2D (None, 28, 28, 512)  66048       3d_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
3d_identity_block_bn3 (BatchNor (None, 28, 28, 512)  2048        3d_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
3d_identity_block_add (Add)     (None, 28, 28, 512)  0           3d_identity_block_bn3[0][0]      
                                                                 3c_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
3d_identity_block_relu4 (Activa (None, 28, 28, 512)  0           3d_identity_block_add[0][0]      
__________________________________________________________________________________________________
4a_conv_block_conv1 (Conv2D)    (None, 14, 14, 256)  131328      3d_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
4a_conv_block_bn1 (BatchNormali (None, 14, 14, 256)  1024        4a_conv_block_conv1[0][0]        
__________________________________________________________________________________________________
4a_conv_block_relu1 (Activation (None, 14, 14, 256)  0           4a_conv_block_bn1[0][0]          
__________________________________________________________________________________________________
4a_conv_block_conv2 (Conv2D)    (None, 14, 14, 256)  590080      4a_conv_block_relu1[0][0]        
__________________________________________________________________________________________________
4a_conv_block_bn2 (BatchNormali (None, 14, 14, 256)  1024        4a_conv_block_conv2[0][0]        
__________________________________________________________________________________________________
4a_conv_block_relu2 (Activation (None, 14, 14, 256)  0           4a_conv_block_bn2[0][0]          
__________________________________________________________________________________________________
4a_conv_block_conv3 (Conv2D)    (None, 14, 14, 1024) 263168      4a_conv_block_relu2[0][0]        
__________________________________________________________________________________________________
4a_conv_block_res_conv (Conv2D) (None, 14, 14, 1024) 525312      3d_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
4a_conv_block_bn3 (BatchNormali (None, 14, 14, 1024) 4096        4a_conv_block_conv3[0][0]        
__________________________________________________________________________________________________
4a_conv_block_res_bn (BatchNorm (None, 14, 14, 1024) 4096        4a_conv_block_res_conv[0][0]     
__________________________________________________________________________________________________
4a_conv_block_add (Add)         (None, 14, 14, 1024) 0           4a_conv_block_bn3[0][0]          
                                                                 4a_conv_block_res_bn[0][0]       
__________________________________________________________________________________________________
4a_conv_block_relu4 (Activation (None, 14, 14, 1024) 0           4a_conv_block_add[0][0]          
__________________________________________________________________________________________________
4b_identity_block_conv1 (Conv2D (None, 14, 14, 256)  262400      4a_conv_block_relu4[0][0]        
__________________________________________________________________________________________________
4b_identity_block_bn1 (BatchNor (None, 14, 14, 256)  1024        4b_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
4b_identity_block_relu1 (Activa (None, 14, 14, 256)  0           4b_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
4b_identity_block_conv2 (Conv2D (None, 14, 14, 256)  590080      4b_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
4b_identity_block_bn2 (BatchNor (None, 14, 14, 256)  1024        4b_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
4b_identity_block_relu2 (Activa (None, 14, 14, 256)  0           4b_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
4b_identity_block_conv3 (Conv2D (None, 14, 14, 1024) 263168      4b_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
4b_identity_block_bn3 (BatchNor (None, 14, 14, 1024) 4096        4b_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
4b_identity_block_add (Add)     (None, 14, 14, 1024) 0           4b_identity_block_bn3[0][0]      
                                                                 4a_conv_block_relu4[0][0]        
__________________________________________________________________________________________________
4b_identity_block_relu4 (Activa (None, 14, 14, 1024) 0           4b_identity_block_add[0][0]      
__________________________________________________________________________________________________
4c_identity_block_conv1 (Conv2D (None, 14, 14, 256)  262400      4b_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
4c_identity_block_bn1 (BatchNor (None, 14, 14, 256)  1024        4c_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
4c_identity_block_relu1 (Activa (None, 14, 14, 256)  0           4c_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
4c_identity_block_conv2 (Conv2D (None, 14, 14, 256)  590080      4c_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
4c_identity_block_bn2 (BatchNor (None, 14, 14, 256)  1024        4c_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
4c_identity_block_relu2 (Activa (None, 14, 14, 256)  0           4c_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
4c_identity_block_conv3 (Conv2D (None, 14, 14, 1024) 263168      4c_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
4c_identity_block_bn3 (BatchNor (None, 14, 14, 1024) 4096        4c_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
4c_identity_block_add (Add)     (None, 14, 14, 1024) 0           4c_identity_block_bn3[0][0]      
                                                                 4b_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
4c_identity_block_relu4 (Activa (None, 14, 14, 1024) 0           4c_identity_block_add[0][0]      
__________________________________________________________________________________________________
4d_identity_block_conv1 (Conv2D (None, 14, 14, 256)  262400      4c_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
4d_identity_block_bn1 (BatchNor (None, 14, 14, 256)  1024        4d_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
4d_identity_block_relu1 (Activa (None, 14, 14, 256)  0           4d_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
4d_identity_block_conv2 (Conv2D (None, 14, 14, 256)  590080      4d_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
4d_identity_block_bn2 (BatchNor (None, 14, 14, 256)  1024        4d_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
4d_identity_block_relu2 (Activa (None, 14, 14, 256)  0           4d_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
4d_identity_block_conv3 (Conv2D (None, 14, 14, 1024) 263168      4d_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
4d_identity_block_bn3 (BatchNor (None, 14, 14, 1024) 4096        4d_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
4d_identity_block_add (Add)     (None, 14, 14, 1024) 0           4d_identity_block_bn3[0][0]      
                                                                 4c_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
4d_identity_block_relu4 (Activa (None, 14, 14, 1024) 0           4d_identity_block_add[0][0]      
__________________________________________________________________________________________________
4e_identity_block_conv1 (Conv2D (None, 14, 14, 256)  262400      4d_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
4e_identity_block_bn1 (BatchNor (None, 14, 14, 256)  1024        4e_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
4e_identity_block_relu1 (Activa (None, 14, 14, 256)  0           4e_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
4e_identity_block_conv2 (Conv2D (None, 14, 14, 256)  590080      4e_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
4e_identity_block_bn2 (BatchNor (None, 14, 14, 256)  1024        4e_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
4e_identity_block_relu2 (Activa (None, 14, 14, 256)  0           4e_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
4e_identity_block_conv3 (Conv2D (None, 14, 14, 1024) 263168      4e_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
4e_identity_block_bn3 (BatchNor (None, 14, 14, 1024) 4096        4e_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
4e_identity_block_add (Add)     (None, 14, 14, 1024) 0           4e_identity_block_bn3[0][0]      
                                                                 4d_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
4e_identity_block_relu4 (Activa (None, 14, 14, 1024) 0           4e_identity_block_add[0][0]      
__________________________________________________________________________________________________
4f_identity_block_conv1 (Conv2D (None, 14, 14, 256)  262400      4e_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
4f_identity_block_bn1 (BatchNor (None, 14, 14, 256)  1024        4f_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
4f_identity_block_relu1 (Activa (None, 14, 14, 256)  0           4f_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
4f_identity_block_conv2 (Conv2D (None, 14, 14, 256)  590080      4f_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
4f_identity_block_bn2 (BatchNor (None, 14, 14, 256)  1024        4f_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
4f_identity_block_relu2 (Activa (None, 14, 14, 256)  0           4f_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
4f_identity_block_conv3 (Conv2D (None, 14, 14, 1024) 263168      4f_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
4f_identity_block_bn3 (BatchNor (None, 14, 14, 1024) 4096        4f_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
4f_identity_block_add (Add)     (None, 14, 14, 1024) 0           4f_identity_block_bn3[0][0]      
                                                                 4e_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
4f_identity_block_relu4 (Activa (None, 14, 14, 1024) 0           4f_identity_block_add[0][0]      
__________________________________________________________________________________________________
5a_conv_block_conv1 (Conv2D)    (None, 7, 7, 512)    524800      4f_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
5a_conv_block_bn1 (BatchNormali (None, 7, 7, 512)    2048        5a_conv_block_conv1[0][0]        
__________________________________________________________________________________________________
5a_conv_block_relu1 (Activation (None, 7, 7, 512)    0           5a_conv_block_bn1[0][0]          
__________________________________________________________________________________________________
5a_conv_block_conv2 (Conv2D)    (None, 7, 7, 512)    2359808     5a_conv_block_relu1[0][0]        
__________________________________________________________________________________________________
5a_conv_block_bn2 (BatchNormali (None, 7, 7, 512)    2048        5a_conv_block_conv2[0][0]        
__________________________________________________________________________________________________
5a_conv_block_relu2 (Activation (None, 7, 7, 512)    0           5a_conv_block_bn2[0][0]          
__________________________________________________________________________________________________
5a_conv_block_conv3 (Conv2D)    (None, 7, 7, 2048)   1050624     5a_conv_block_relu2[0][0]        
__________________________________________________________________________________________________
5a_conv_block_res_conv (Conv2D) (None, 7, 7, 2048)   2099200     4f_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
5a_conv_block_bn3 (BatchNormali (None, 7, 7, 2048)   8192        5a_conv_block_conv3[0][0]        
__________________________________________________________________________________________________
5a_conv_block_res_bn (BatchNorm (None, 7, 7, 2048)   8192        5a_conv_block_res_conv[0][0]     
__________________________________________________________________________________________________
5a_conv_block_add (Add)         (None, 7, 7, 2048)   0           5a_conv_block_bn3[0][0]          
                                                                 5a_conv_block_res_bn[0][0]       
__________________________________________________________________________________________________
5a_conv_block_relu4 (Activation (None, 7, 7, 2048)   0           5a_conv_block_add[0][0]          
__________________________________________________________________________________________________
5b_identity_block_conv1 (Conv2D (None, 7, 7, 512)    1049088     5a_conv_block_relu4[0][0]        
__________________________________________________________________________________________________
5b_identity_block_bn1 (BatchNor (None, 7, 7, 512)    2048        5b_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
5b_identity_block_relu1 (Activa (None, 7, 7, 512)    0           5b_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
5b_identity_block_conv2 (Conv2D (None, 7, 7, 512)    2359808     5b_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
5b_identity_block_bn2 (BatchNor (None, 7, 7, 512)    2048        5b_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
5b_identity_block_relu2 (Activa (None, 7, 7, 512)    0           5b_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
5b_identity_block_conv3 (Conv2D (None, 7, 7, 2048)   1050624     5b_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
5b_identity_block_bn3 (BatchNor (None, 7, 7, 2048)   8192        5b_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
5b_identity_block_add (Add)     (None, 7, 7, 2048)   0           5b_identity_block_bn3[0][0]      
                                                                 5a_conv_block_relu4[0][0]        
__________________________________________________________________________________________________
5b_identity_block_relu4 (Activa (None, 7, 7, 2048)   0           5b_identity_block_add[0][0]      
__________________________________________________________________________________________________
5c_identity_block_conv1 (Conv2D (None, 7, 7, 512)    1049088     5b_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
5c_identity_block_bn1 (BatchNor (None, 7, 7, 512)    2048        5c_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
5c_identity_block_relu1 (Activa (None, 7, 7, 512)    0           5c_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
5c_identity_block_conv2 (Conv2D (None, 7, 7, 512)    2359808     5c_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
5c_identity_block_bn2 (BatchNor (None, 7, 7, 512)    2048        5c_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
5c_identity_block_relu2 (Activa (None, 7, 7, 512)    0           5c_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
5c_identity_block_conv3 (Conv2D (None, 7, 7, 2048)   1050624     5c_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
5c_identity_block_bn3 (BatchNor (None, 7, 7, 2048)   8192        5c_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
5c_identity_block_add (Add)     (None, 7, 7, 2048)   0           5c_identity_block_bn3[0][0]      
                                                                 5b_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
5c_identity_block_relu4 (Activa (None, 7, 7, 2048)   0           5c_identity_block_add[0][0]      
__________________________________________________________________________________________________
avg_pool (AveragePooling2D)     (None, 1, 1, 2048)   0           5c_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
flatten (Flatten)               (None, 2048)         0           avg_pool[0][0]                   
__________________________________________________________________________________________________
fc1000 (Dense)                  (None, 1000)         2049000     flatten[0][0]                    
==================================================================================================
Total params: 25,636,712
Trainable params: 25,583,592
Non-trainable params: 53,120
__________________________________________________________________________________________________

五、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。

# 设置优化器,我这里改变了学习率。
opt = tf.keras.optimizers.Adam(learning_rate=1e-7)

model.compile(optimizer="adam",
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

六、训练模型

epochs = 10

history = model.fit(
    train_ds,
    validation_data=val_ds,
    epochs=epochs
)
Epoch 1/10
57/57 [==============================] - 12s 87ms/step - loss: 2.4394 - accuracy: 0.6620 - val_loss: 484.4415 - val_accuracy: 0.1858
Epoch 2/10
57/57 [==============================] - 3s 55ms/step - loss: 0.3268 - accuracy: 0.8904 - val_loss: 5.5874 - val_accuracy: 0.4513
Epoch 3/10
57/57 [==============================] - 3s 52ms/step - loss: 0.1593 - accuracy: 0.9558 - val_loss: 2.0023 - val_accuracy: 0.6726
Epoch 4/10
57/57 [==============================] - 3s 52ms/step - loss: 0.0546 - accuracy: 0.9869 - val_loss: 1.4410 - val_accuracy: 0.7788
Epoch 5/10
57/57 [==============================] - 3s 51ms/step - loss: 0.1656 - accuracy: 0.9567 - val_loss: 2.1653 - val_accuracy: 0.5487
Epoch 6/10
57/57 [==============================] - 3s 51ms/step - loss: 0.2403 - accuracy: 0.9221 - val_loss: 1.0641 - val_accuracy: 0.7257
Epoch 7/10
57/57 [==============================] - 3s 52ms/step - loss: 0.1774 - accuracy: 0.9377 - val_loss: 0.4922 - val_accuracy: 0.8673
Epoch 8/10
57/57 [==============================] - 3s 51ms/step - loss: 0.0733 - accuracy: 0.9760 - val_loss: 0.2036 - val_accuracy: 0.9381
Epoch 9/10
57/57 [==============================] - 3s 51ms/step - loss: 0.0185 - accuracy: 0.9992 - val_loss: 0.1091 - val_accuracy: 0.9735
Epoch 10/10
57/57 [==============================] - 3s 51ms/step - loss: 0.0086 - accuracy: 1.0000 - val_loss: 0.1246 - val_accuracy: 0.9735

六、模型评估

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

八、保存and加载模型

# 保存模型
model.save('model/my_model.h5')
# 加载模型
new_model = keras.models.load_model('model/my_model.h5')

九、预测

# 采用加载的模型(new_model)来看预测结果

plt.figure(figsize=(10, 5))  # 图形的宽为10高为5

for images, labels in val_ds.take(1):
    for i in range(8):
        ax = plt.subplot(2, 4, i + 1)  
        
        # 显示图片
        plt.imshow(images[i])
        
        # 需要给图片增加一个维度
        img_array = tf.expand_dims(images[i], 0) 
        
        # 使用模型预测图片中的人物
        predictions = new_model.predict(img_array)
        plt.title(class_names[np.argmax(predictions)])

        plt.axis("off")

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1235338.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

芯片IO口不加电阻会怎样?

芯片IO口不加电阻会怎样? 可能会导致以下几个后果: 1.高电流问题,IO口没有电阻限流,当与外部设备直接连接时,就可能会导致过大的电流流过IO口,这就可能损坏IO口,引起短路或烧坏其它电路组件。像…

设计模式-访问者模式-笔记

Visitor模式 动机(Morivation) 在软件构建过程中,由于需求的变化,某些类层次结构中常常需要增加新的行为(方法),如果直接在基类中做这样的更改,将会给子类带来很繁重的变更负担&am…

4. Pandas行列操作

4.1 新增列 4.1.1 assign Pandas中的assign()函数不仅可以实现不改变原数据情况下新增列,而且可以同时新增多列,还可以配合链式操作使用一行代码完成多个新增列创建,使得代码非常整洁。 (1)函…

【GitHub】保姆级使用教程

一、如何流畅访问GitHub 1、网易uu加速器 输入网址,无脑下载网易加速器;https://uu.163.com/ 下载安装完毕后,创建账号进行登录 登录后,在右上角搜索框中搜索“学术资源”,并点击; 稍等一会儿就会跳…

如何使用SD-WAN提升物流供应链网络效率

案例背景 本次分享的物流供应链企业是一家国际性的大型企业,专注于提供全球范围内的物流和供应链解决方案。案例用户在不同国家和地区均设有多个分支机构和办公地点,以支持客户需求和业务运营。 在过去,该企业用户使用传统的MPLS网络来连接各…

微信小程序知识付费平台,公众号App+SAAS+讲师端,多端部署

三勾知识付费系统基于thinkphp8element-plusuniapp打造的面向开发的知识付费系统,方便二次开发或直接使用,可发布到多端,包括微信小程序、微信公众号、QQ小程序、支付宝小程序、字节跳动小程序、百度小程序、android端、ios端。 功能包含直播…

2023 最新 PDF.js 在 Vue3 中的使用(长期更新)

因为自己写业务要定制各种 pdf 预览情况(可能),所以采用了 pdf.js 而不是各种第三方封装库,主要还是为了更好的自由度。 一、PDF.js 介绍 官方地址 中文文档 PDF.js 是一个使用 HTML5 构建的便携式文档格式查看器。 pdf.js 是社区…

scala的schema函数(算子)

在翻阅一些代码的时候,schema算子好像没碰到过,比较好奇structField这个类型,为什么可以直接用name参数,就翻阅了下资料: 在 Apache Spark 中,DataFrame 是一种分布式的数据集,它是以类似于关系…

SO3 与so3 SE3与se3 SIM3

文章目录 1 旋转*叉乘1.1 旋转矩阵的导数1.2 物理意义1.3 实例1.4 角轴与反对称矩阵 2 SO3 与so32.1 so3 2 SO32.2 SO3 2 so3 3 SE3 与se33.1 se3 2 SE3:3.2 SE3 2 se3 4 SIM3 与sim35 Adjoint Map 1 旋转*叉乘 1.1 旋转矩阵的导数 根据旋转矩阵的性质: R R T I …

ANSYS中如何手动为装配体添加接触约束教程

接触的类型: 在接触类型(Type)选项中,软件共提供了绑定接触(Bonded)、不分离接触(No Separation)、无摩擦接触(Frictionless)、粗糙接触(Rough&a…

C++ STL -->string类

文章目录 STL什么是STL String类string类对象的构造方式string类对象的容量操作string类对象的访问及遍历操作string迭代器函数遍历类对象 stirng类对象的修改操作string类非成员函数 STL 什么是STL STL全称standard template libaray-标准模板库 是C标准库的重要组成部分 不…

【EI会议征稿】第四届公共管理与智能社会国际学术会议(PMIS 2024)

第四届公共管理与智能社会国际学术会议(PMIS 2024) 2024 4th International Conference on Public Management and Intelligent Society 第四届公共管理与智能社会国际学术会议将在2024年3月15-17日在长沙召开。PMIS 2024由中南大学社会计算研究中心、中南大学公共…

Linux操作系统使用及C高级编程-D11-D13结构体

由一批数据组合而成的结构型数据。组成结构型数据的每个数据称为结构型数据的“成员”,其描述了一块内存空间的大小及解释意义。 语法: struct 结构体名 { 结构体成员列表 }; 下图是struct的定义和使用方法,其中20行这种赋值方式错误&#xf…

c# 文件读取和写入

文件写入 using System.Collections.Generic; namespace demo1;/// <summary> /// System.IO下的所有的Stream类是所有数据流的基类 /// 流是用于传输数据的对象&#xff0c;流就是用来传输数据的 /// 数据传输的两种方式&#xff1a;1、数据从外部源传输到程序中&#…

微服务实战系列之加密RSA

前言 在这个时代&#xff0c;我们选择的人生目标已丰富多彩&#xff0c;秉持的人生态度也千差万别&#xff1a; 除了吃喝玩乐&#xff0c;还有科技探索&#xff1b; 除了CityWalk&#xff0c;还有“BookWalk”&#xff1b; 除了走遍中国&#xff0c;还有走遍世界&#xff1b; …

Me-and-My-Girlfriend-1

Me-and-My-Girlfriend-1 一、主机发现和端口扫描 主机发现&#xff0c;靶机地址192.168.80.147 arp-scan -l端口扫描&#xff0c;开放了22、80端口 nmap -A -p- -sV 192.168.80.147二、信息收集 访问80端口 路径扫描 dirsearch -u "http://192.168.80.147/" -e * …

Linux进程通信——消息队列

概念 消息队列&#xff0c;是消息的链接表&#xff0c;存放在内核中。一个消息队列由一个标识符(即队列ID)来标识。 特点 1.消息队列是面向记录的&#xff0c;其中的消息具有特定的格式以及特定的优先级。&#xff08;消息队列是结构体&#xff09; 2.消息队列独立于发送与接…

企业app软件定制开发的重点是什么?|小程序网站搭建

企业app软件定制开发的重点是什么&#xff1f;|小程序网站搭建 在当今数字化时代&#xff0c;企业对于信息技术的依赖越来越大。为了适应市场需求并提高内部运营效率&#xff0c;许多企业开始寻求定制开发企业app软件。这种定制开发可以根据企业的具体需求和业务流程进行个性化…

MySQL InnoDB 引擎底层解析(二)

6.2.InnoDB 的表空间 表空间是一个抽象的概念&#xff0c;对于系统表空间来说&#xff0c;对应着文件系统中一个或多个实际文件&#xff1b;对于每个独立表空间来说&#xff0c;对应着文件系统中一个名为表名.ibd 的实际文件。大家可以把表空间想象成被切分为许许多多个页的池…