基于可变形卷积和注意力机制的带钢表面缺陷快速检测网络DCAM-Net(论文阅读笔记)

news2024/11/20 20:22:25

原论文链接->DCAM-Net: A Rapid Detection Network for Strip Steel Surface Defects Based on Deformable Convolution and Attention Mechanism | IEEE Journals & Magazine | IEEE Xplore

DCAM-Net: A Rapid Detection Network for Strip
Steel Surface Defects Based on Deformable
Convolution and Attention Mechanism(论文标题)

Abstract(摘要)

带钢(the strip steel)表面缺陷检测是带钢生产中的关键环节,是提高带钢生产质量的重要保证。然而,由于带钢表面缺陷图像的对比度差(poor contrast),缺陷类型(defect types)、尺度(scales)、纹理结构的多样性(texture structures)以及缺陷分布的不规则性(irregular distribution),使得现有方法难以实现带钢表面缺陷的快速、准确检测。本文提出了一种带钢快速检测网,基于可变形卷积和注意机制(deformable convolution and attention mechanism),即DCAM-Net

首先,我们引入限制对比度自适应直方图均衡化 (传送门->CLAHE)作为数据增强方法(a data augmentation method),以提高缺陷图像的对比度,并突出(highlight)带钢表面图像上的缺陷特征。

其次,我们提出了一种新的(a novel)增强型变形特征提取模块(enhanced deformation-feature extraction block)(EDE-block),去解决复杂多样的以及不规则分布的带钢缺陷。通过融合变形卷积,扩展了缺陷特征提取网络的接收域,以捕获完整和全面的缺陷纹理特征。

最后,我们引入坐标注意力模块(coordination attention)(CA),以取代骨干网络(backbone)的空间金字塔池(SPP)结构,进一步分解池操作,有效地提高了网络的缺陷定位能力。在NEU-DET数据集上的实验结果表明所提出的算法的平均精度(the mean Average Precision)(mAP@loU=0.5)为82.6%,比基线网络提高了7.3%的检测速度,达到100.2帧(fps),有效提高了带钢表面缺陷的检测效率

Index Terms— Attention mechanism, coordinate attention, deformable convolution, object detection, surface defect detection, YOLOX.
索引词——注意力机制,坐标注意力,可变性卷积,目标检测,表面缺陷检测,YOLOX网络

 I. INTRODUCTION(引入)

①由于带钢生产工艺、环境等问题质量导致带钢存在各自缺陷,本文指出缺陷检测技术是保证高质量带钢生产的关键步骤,能够自动化程度和生产效率,降低质检人员劳动强度、成本,提高钢铁企业的市场竞争力,所以具有广泛的应用前景。

②缺陷检测问题,通常采用传统的图像处理与机器学习相结合的方法,主要检测缺陷的边缘形状、纹理信息、灰度变换等特征。例如,对于具有单一背景的缺陷图像,一些边缘检测算子,如SobelCanny,可用于定位简单的缺陷。对于具有周期性纹理背景的缺陷小波变换(wavelet transforms)和周期性的加伯变换(Gabor transforms)可用于将图像从空间域变换到频域进行检测。这种方法还可以表征图像的统计特性,如灰度差和灰度直方图。此外,缺陷可以通过传统的机器学习方法进行分类,如SVMrandom forest。传统的方法通常需要通过手工设计(manual design)来描述缺陷特征。而且,基于人的主观性(subjectivity),手工设计的特征很难分辨出工业表面缺陷。而面对未知且多样的缺陷类型,这些检测方法的泛化能力往往较差(poor generalization ability)。因此,当面对更复杂和不规则的缺陷时,传统的方法难以在实际的工业应用场景中应用。

③接着论文介绍了目标检测的部分发展历程——

Girshick开发R-CNN,此后目标检测像滚雪球一样迅速发展(object detection has snowballed)-->提出SPPnet->提出fast R-CNN,结合R-CNN和SPPnet的优点提高检测效率-->提出faster R-CNN,即使用RPN代替fast R-CNN来生成区域建议,显著提高检测速率-->YOLOv1将目标检测问题统一为回归问题-->Redmon and Farhadi提出YOLO9000,提高YOLOv1的召回和定位能力-->两人又提出YOLOv3,利用ResNet残差思想进一步提高检测速度和准确性-->Bochkovskiy等人提出YOLOv4,在neck部分的特征金字塔网络(FPN)中添加了路径聚合网络(PAN),有效提高训练速率-->YOLOv5被提出,该模型对输入图像大小进行校正,并利用k-均值对锚框(anchor)进行聚类,在计算过程中自适应计算锚框,同时在FPN中应用跨阶段部分(CSP)模块,在保证检测精度的同时显著提高检测速度,相对降低模型参数-->基于YOLOv3的YOLOX被提出,YOLOX首先用CSPDarknet53取代了主干网络(backbone),以进一步增强特征提取。其次,将传统的头改进为解耦的头(decoupled head),提高了检测网络的收敛速度和表达能力。最后,采用anchor-free代替anchor-based生成锚框,大大减少了许多锚框造成的计算和耗时问题,提高了检测网络的泛化能力和检测速度(不需要预定义锚框,因此能够更加自适应地检测不同尺寸、不同比例的目标)。

④论文继续介绍历程——

2020年,一种多层次特征网络(a multilevel feature network)被提出,其思想是将多层次特征结合成一个特征,以此来获得带钢表面缺陷位置的更多细节。

2021年,Kou等人将YOLOv3算法应用于带钢表面缺陷图像的数据集NEU-DET,平均精度(mAP)效应达到72.2%,说明YOLOv3在带钢表面缺陷检测中的适用性。Cheng和Yu提出了结合注意机制和自适应空间特征融合模块RetinaNet,有效地提高了对带钢表面缺陷的检测效果。Xing和Jia设计了一种新的损失函数XIOU,以更好地检测带钢表面缺陷。Gao等人提出了一个模块特征收集(a module for feature collection)和压缩网络(compression network)用来合并多尺度特征信息(multiscale feature information),并提供了一种新的高斯加权池方法取代ROI池,在NEU-DET数据集中达到了80.0%的mAP效应以及实现了64.0帧的检测速度,满足工业实时检测(industrial real-time detection)的应用要求。

2022年,Wang等人设计了一种噪声正则化(regularization)策略,可以更好地提高训练模型的鲁棒性,因为带钢表面不良图像的噪声会导致模型崩溃(model collapse)。Li等人提出了一种改进的YOLOv5网络模型,用于检测带钢表面的微小缺陷(minor defects)。在模型中嵌入了注意模块CBAM,并优化(be optimized)了检测网络结构和损失函数。在自构建的工业缺陷数据集(self-constructed industrial defect dataset)的mAP值达到91.0%。

⑤论文开始指出问题——

从以上综述中可以看出,近年来对带钢表面缺陷检测算法的研究,已经不同程度地提高了深度学习模型的检测精度(detection accuracy)和检测速度(detection speed),取得了良好的检测效果。然而,在带钢表面缺陷检测中,不同缺陷表面的缺陷类型、尺寸、形状和纹理特征的复杂性(complexity)仍然是一个常见的问题,使得缺陷难以准确检测,不规则的缺陷分布(irregular defect distribution)增加了检测的难度。此外,由于摄影设备和照明(illumination)的影响,带钢表面部分缺陷的图像存在对比度较低(low contrast)的问题。缺陷与背景对比度低,导致带钢表面成像后噪声较大,严重干扰(interferes)算法的缺陷检测,容易导致检测遗漏(missed detection)。

⑥因此,为了提高目标检测算法在钢板表面缺陷检测中的准确性和适用性,本文借鉴文献的方法,以YOLOX为目标检测模型的基础,构建了基于可变形卷积注意力机制(deformable convolution and attention mechanism)的快速检测带钢表面缺陷DCAM-Net网络,如图Fig. 1所示。

cfee4feb07f642d9aa789a3f221960a6.png
Fig. 1. Overall architecture of the DCAM-Net.


II. DCAM-NET
A. Baseline Networks
论文指出深度学习的锚框的生成模式尤为重要,评价YOLO系列的检测头采用的聚类生成锚框的模式会带来两个问题——
①聚类方法会导致模型在不同数据集上的泛化能力较差,训练后生成的锚框大多不能使用,导致大量的计算冗余,从而提高了计算成本和检测速度。
②在带钢的表面缺陷图像数据中,由于缺陷之间的显著差异,聚类得到的锚框的大小容易不稳定,会在一定程度上影响检测网络模型的检测效果。
对比YOLO系列网络——
①YOLOX检测头部分用无锚定(anchor-free)技术取代了基于锚定的技术。采用匈牙利算法作为参考,并设计了简化最优传输分配(SimOTA)匹配算法,以减少模型训练过程中的许多冗余锚框。
②YOLOX不需要手动调整锚框的大小,从而提高了模型对不同图像的泛化能力。YOLOX对YOLOv3上的一系列改进有效地提高了检测效果和速度,特别对不同图像上的泛化性(generalization ability to different images)。
因此,论文综合考虑了基于无锚框的YOLOX的优势,决定将其作为基线网络(baseline)。
论文又指出YOLOX也存在不足——
①由于残余结构的设计问题,YOLOX的骨干网络难以更好地改进带钢表面缺陷特征的提取。
②由于动态样本匹配(dynamic sample matching)的问题,YOLOX在检测不规则缺陷对象方面的性能较差。与YOLO系列中传统的anchor-based的方法相比,YOLOX对复杂纹理的缺陷对象的检测性能较差,精度较低。
因此,YOLOX仍有一定的改进空间。
论文顺势引出自己的改进——
为了提高YOLOX算法在带钢表面缺陷检测中的性能,我们设计了一种基于可变形卷积和注意力机制(deformable convolution and attention mechanism)的带钢表面缺陷检测网络,如图Fig. 1所示。
首先,我们引入限制对比度自适应直方图均衡化(the contrast limited adaptive histogram equalization)(CLAHE)作为一种数据增强方法来提高缺陷图像的对比度,并突出带钢表面图像上的缺陷特征。
其次,针对复杂、不规则的带钢缺陷设计了增强变形特征提取块(enhanced deformation-feature extraction block)(EDE-block)。通过融合(by fusing)可变形卷积(deformable convolution),扩展缺陷特征提取网络的感受野(receptive field),以捕获完整而全面(complete and comprehensive)的缺陷纹理特征(defect texture features)。
最后,引入坐标(coordinate)注意力模块(CA)来替代backbone部分的SPP结构,有效增强了网络定位缺陷(locate the defect feature)的能力。

B. CLAHE 

由于摄像(image-capturing)设备、光变化、噪声和环境干扰的影响,带钢表面缺陷图像对比度较低。缺陷与背景之间的对比度较低,导致带钢表面成像后的噪声会干扰算法的缺陷检测,容易导致缺失检测(it is easy to cause the missing detection)。Reza提出利用CLAHE技术对照度较差的图像进行实时图像增强(real-time image enhancement),使图像获得了良好的对比度增强效果。因此,在数据增强方面(in terms of data augmentation),本文考虑增强带钢表面缺陷图像的对比度。目前,许多缺陷检测算法还没有使用对比度增强(contrast enhancement)的方法对带钢表面缺陷数据集进行增强。鉴于(given)CLAHE具有良好的对比度增强效果,本文将CLAHE应用于数据增强,以提高检测网络对带钢表面缺陷的捕获能力。

 C. EDE-Block

在这个模块部分,论文先指出了传统卷积存在的问题,即网络的感受野被卷积大小所限制,故有人提出采用可变性卷积替代传统的标准卷积进行偏移学习——

在带钢表面缺陷检测过程中,缺陷的不同类型、尺寸、形状和纹理特征是导致检测难度和网络存在的普遍问题(general issues)。在深度学习模型中,由于卷积结构的固定性(the fixed structure of convolution),在特征提取(feature extraction)过程中,网络的感受野范围(the receptive field range of network)将被限制在卷积的大小上。然而,带钢表面缺陷的图像往往存在不规则特征,传统的卷积方法有限。为了提高卷积神经网络(convolution neural network)对带钢表面缺陷的检测性能(detection performance),必须扩大(expand)检测网络的感受野。大的感受野可以使检测网络更好地学习长程空间关系(long-range spatial relationship),建立隐式空间模型(implicit spatial model),Dai等人提出使用可变形卷积代替标准卷积通过可变形卷积进行偏移学习(offset learning),使检测网络能够动态地(dynamically)捕获完整的纹理缺陷特征

主要(primary)的方法是通过在标准卷积上添加一个学习偏移量(learning offset)来扩展(extend)卷积核的采样范围(sampling range)。可变形卷积采样的偏移例子如图Fig.2所示。由于带钢表面缺陷的形状不同,标准卷积对非刚性带钢(nongrid strip steel)表面缺陷特征取样的影响是平均的。相反(on the contrary),可变形卷积可以在采样过程中(in the sampling process)拟合(fit)带钢缺陷对象的形状,以学习完整的对象特征。

可变形卷积的计算公式可定义为:

其中R定义了接受野的大小(size)和扩张(dilation),它的值为R={(−1,−1), (−1,0),…,(0,1),(1,1)}。 p 0 为中心点位置, p n 为R范围内的9个位置,1 pn为学习偏移量,使得采样点扩散成非网格结构。
Fig. 2. Two different 3 × 3 sampling forms of the convolutional kernel.
(a) Standard convolution. (b) Deformable convolution.


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1232764.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2023最新国内外项目进度管理软件排行榜(推荐)

介绍8款优秀的在线项目管理软件,其中进度猫、Trello、Clarizen、Asana、MeisterTask、ClickUp和Wrike都是以甘特图为核心进行项目管理,而monday则是低代码项目管理软件,提供一站式的工作记录和管理。这些软件都可以帮助项目经理更有效地管理项…

PHP/Laravel通过经纬度计算距离获取附近商家

实际开发中,常常需要获取用户附近的商家,思路是 获取用户位置(经纬度信息)在数据库中查询在距离范围内的商家 注: 本文章内计算距离所使用地球半径统一为 6378.138 km public function mpa_list($latitude,$longitude,$distance){// $latitude 34.306465;// $longitude 10…

解锁数据库运维秘籍:掌握AntDB-T动态共享内存,提升进程间通信效率

动态共享内存是AntDB数据库通信的重要手段,本文主要阐述AntDB-T数据库动态共享内存的实现原理、实现方式与使用方法。 AntDB-T数据库是一款企业级通用分布式关系型数据库,其数据库内核是基于进程模型实现的,因此进程间通信(IPC&am…

软件安全检测赋能赣州发展,开源网安与赣州国投完成签约

​11月20日,开源网安与赣州章贡区数智国投科技有限公司签订投资协议,签约后双方将在赣州打造软件供应链安全检测中心,以强大的软件测试能力为数字政府、数字经济等领域提供全面安全检测和软件安全运营监测等服务,提升软件的安全与…

centos7 利用nc命令探测某个tcp端口是否在监听

脚本 # 安装nc yum install -y ncnc -vz 192.168.3.128 60001 if [ $? -eq 0 ]; thenecho "tcp succeed" elseecho "tcp failed" fi nc -vz 192.168.3.128 60001 探测192.168.3.128服务器上60001 tcp端口, -vz说明是探测TCP的 端口开启的情况 执行…

软件外包开发的验收流程

软件外包开发的验收流程是确保项目符合预期标准并满足客户需求的关键步骤。以下是一个通用的软件外包开发验收流程,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交流合作。 1.明确验收标准: 在项目…

2023食药物质产业发展大会12月在浙江绍兴隆重召开

为更好地推动食药物质行业高质量发展,推进食药物质相关产品的创新应用,促进行业科技进步,提高行业技术水平,中国生物发酵产业协会定于12月15-17日在浙江省绍兴市召开“2023食药物质产业发展大会暨中国生物发酵产业协会食药物质专业…

值得收藏的 9 款适用于 Windows 的 PDF 转换器软件

将 PDF 文档转换为您所需的文件格式的方法有很多,例如,使用在线转换工具或桌面 PDF 转换器软件。 虽然在线PDF转换工具方便快捷,但它们没有顾虑,例如内容隐私/安全,因为您需要将文件上传到开发人员的服务器。 这就是…

设计模式——结构型模式

结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。 由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更…

递归和分治

递归 递归(英语:Recursion),在计算机科学中,递归指的是一个函数在其定义中调用自身的方法。这种技术允许程序解决复杂问题,通过将它们分解为更小、更易管理的相似问题。递归通常与分治策略相关联&#xff…

5-Nacos环境搭建

本文介绍nacos集群环境的搭建。 1、基础环境 机器:mac,intel版本jdk:1.8数据库:mysql 8.029nacos:2.03 2、下载 nacos点击这里下载。 3、开始配置 这里搭建在自己机器上搭建两台nacos集群。下载完成后&#xff0…

Mac使用unrar和rar解压文件

WinRAR archiver, a powerful tool to process RAR and ZIP files 下载 tar -xzvf rarmacos-x64-624.tar.gz cd rar # 安装rar命令 sudo install -c -o $USER rar /usr/local/bin/ # 安装unrar命令 sudo install -c -o $USER unrar /usr/local/bin/ 压缩rar a test.rar readme…

智慧工地网络广播系统

智慧工地网络广播系统 智慧工地网络广播,是智慧公司不可缺少的一环,对于工地广播来说,音质和传输稳定性都是非常重要的要素。尤其是在高楼大厦密集的地方,可能会存在信号干扰和传输受阻的情况,这时候可以考虑使用网络…

hadoop 配置历史服务器 开启历史服务器查看 hadoop (十)

1. 配置了三台服务器,hadoop22, hadoop23, hadoop24 2. hadoop文件路径: /opt/module/hadoop-3.3.4 3. hadoop22机器配置历史服务器的配置文件: 文件路径:/opt/module/hadoop-3.3.4/etc/hadoop 文件名称:mapred-size.xml 新增历…

一文带你了解MySQL数据库基础

✏️✏️✏️今天给各位带来的是关于数据库基础方面的知识。 清风的CDSN博客 😛😛😛希望我的文章能对你有所帮助,有不足的地方还请各位看官多多指教,大家一起学习交流! 动动你们发财的小手,点点…

kubernetes测试部署一个nginx

在kubenetes集群中部署一个nginx程序测试集群是否能正常工作 #部署nginx程序 [rootmaster ~]# kubectl create deployment nginx --imagenginx:1.18-alpine #开放端口 [rootmaster ~]# kubectl expose deployment nginx --port80 --typeNodePort #查看pod状态 [rootmaster …

电脑开不了机怎么办?三招帮你成功解决!

电脑是我们日常工作和生活的重要工具,但有时候它们也会出现开机问题。当电脑无法启动时,可能会让人感到焦虑,电脑开不了机怎么办?不必担心,通常有多种方法可以解决这些问题。本文将介绍三种常见的方法,以帮…

【工具与中间件】IDEA工具的使用:热部署、快捷键与版本控制

文章目录 0. 前言1. IDEA 配置热部署2. IDEA 常用快捷键3. IDEA 绑定GIT4. 小结 IDEA工具配置热部署,让我们的开发更有效率 0. 前言 以下是水文字,心急的读者可以直接阅读下面的章节。 有时,新,先进的东西确实可以给这个时代的…

Shell脚本:Linux Shell脚本学习指南(第二部分Shell编程)一

第二部分:Shell编程(一) 这一章我们正式进入 Shell 脚本编程,重点讲解变量、字符串、数组、数学计算、选择结构、循环结构和函数。 Shell 的编程思想虽然和 C、Java、Python、C# 等其它编程语言类似,但是在语法细节方…

Zynq-Linux移植学习笔记之66- 国产ZYNQ通过裕太PHY8521连接国产交换芯片

1、背景介绍 ZYNQ通过裕太PHY 8521主要连接两种国产交换芯片,一种为盛科的CTC8096,另一种为32所的JEM5396。框图示意如下: 2、硬件状态确认 首先检查phy的模式,确认为SGMII_MAC-RGMII_PHY 可通过读出A001寄存器确认状态 读出来应…