提取图像文本的 5 大 Python 库

news2025/1/15 6:45:55

引言

光学字符识别是一个古老但依然具有挑战性的问题,涉及从非结构化数据中(包括图像和PDF文档)检测和识别文本。它在银行、电子商务和社交媒体内容管理等领域具有广泛的应用。

但与数据科学中的每个主题一样,尝试学习如何解决OCR任务时存在大量的资源。这就是为什么我写下这篇教程,它可以帮助您入门。

在本文中,我将展示一些Python库,可以让您轻松从图像中提取文本,无需太多麻烦。这些库的说明后面附有一个实际示例。所使用的数据集均来自Kaggle。

目录

  1. pytesseract

  2. EasyOCR

  3. Keras-OCR

  4. TrOCR

  5. docTR

1. pytesseract

它是最流行的Python库之一,用于光学字符识别。它使用Google的Tesseract-OCR引擎从图像中提取文本。支持多种语言。

如果想知道是否支持您的语言,请查看这个链接:https://tesseract-ocr.github.io/tessdoc/Data-Files-in-different-versions.html。您只需要几行代码将图像转换为文本:

# installation
!sudo apt install tesseract-ocr
!pip install pytesseract

import pytesseract
from pytesseract import Output
from PIL import Image
import cv2

img_path1 = '00b5b88720f35a22.jpg'
text = pytesseract.image_to_string(img_path1,lang='eng')
print(text)

输出:

图片

我们还可以尝试获取图像中每个检测到的项目的边界框坐标。

# boxes around character
print(pytesseract.image_to_boxes(img_path1))

结果:

~ 532 48 880 50 0
...
A 158 220 171 232 0
F 160 220 187 232 0
I 178 220 192 232 0
L 193 220 203 232 0
M 204 220 220 232 0
B 228 220 239 232 0
Y 240 220 252 232 0
R 259 220 273 232 0
O 274 219 289 233 0
N 291 220 305 232 0
H 314 220 328 232 0
O 329 219 345 233 0
W 346 220 365 232 0
A 364 220 379 232 0
R 380 220 394 232 0
D 395 220 410 232 0
...

正如您所注意到的,它估算了每个字符的边界框,而不是每个单词!如果我们想提取每个单词的框,而不是字符,那么应该使用image_to_data的另一种方法,而不是image_to_boxes:

# boxes around words
print(pytesseract.image_to_data(img_path1))

图片

这是返回的结果,并不是很完美。例如,它将“AFILM”解释为一个单词。此外,它没有检测和识别输入图像中的所有单词。

2. EasyOCR

轮到另一个开源Python库:EasyOCR。与pytesseract类似,它支持80多种语言。您可以通过网络演示快速而轻松地尝试它,无需编写任何代码。它使用CRAFT算法来检测文本并使用CRNN作为识别模型。此外,这些模型是使用Pytorch实现的。

图片

如果在Google Colab上工作,建议您设置GPU,这有助于加快此框架的速度。以下是详细代码:

# installation
!pip install easyocr

import easyocr

reader = easyocr.Reader(['en'])
extract_info = reader.readtext(img_path1)

for el in extract_info:
   print(el)

图片

与pytesseract相比,结果要好得多。对于每个检测到的文本,我们还有边界框和置信度级别。

3. Keras-OCR

Keras-OCR是另一个专门用于光学字符识别的开源库。与EasyOCR一样,它使用CRAFT检测模型和CRNN识别模型来解决任务。与EasyOCR的不同之处在于,它使用Keras而不是Pytorch实现。Keras-OCR的唯一不足之处是它不支持非英语语言。

# installation
!pip install keras-ocr -q

import keras_ocr

pipeline = keras_ocr.pipeline.Pipeline()
extract_info = pipeline.recognize([img_path1])
print(extract_info[0][0])

这是提取的第一个单词的输出:

('from',
 array([[761.,  16.],
        [813.,  16.],
        [813.,  30.],
        [761.,  30.]], dtype=float32))

为了可视化所有结果,我们将输出转换为Pandas数据框:

diz_cols = {'word':[],'box':[]}
for el in extract_info[0]:
    diz_cols['word'].append(el[0])
    diz_cols['box'].append(el[1])
kerasocr_res = pd.DataFrame.from_dict(diz_cols)
kerasocr_res

图片

神奇的是,我们可以看到我们有更清晰和更精确的结果。

4. TrOCR

TrOCR是一种基于transformers的生成式图像模型,用于从图像中检测文本。它由编码器和解码器组成:TrOCR使用预训练的图像变换器作为编码器和预训练的文本变换器作为解码器。有关更多详细信息,请查看论文。Hugging Face平台上还有这个库的良好文档。首先,我们加载预训练模型:

# installation
!pip install transformers

from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image

model_version = "microsoft/trocr-base-printed"
processor = TrOCRProcessor.from_pretrained(model_version)
model = VisionEncoderDecoderModel.from_pretrained(model_version)

在传递图像之前,我们需要调整其大小并进行规范化。一旦图像已经转换,我们可以使用.generate()方法提取文本。

image = Image.open(img_path1).convert("RGB")
pixel_values = processor(image, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
extract_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print('output: ',extract_text)
# output: 2.50

这与先前的库不同,它返回一个无意义的数字。为什么?TrOCR仅包含识别模型,而没有检测模型。要解决OCR任务,首先需要检测图像中的对象,然后提取输入中的文本。由于它只关注最后一步,它的性能不佳。要使其正常工作,最好使用边界框裁剪图像的特定部分,如下所示:

crp_image = image.crop((750, 3.4, 970, 33.94))
display(crp_image)

图片

然后,我们尝试再次应用模型:

pixel_values = processor(crp_image, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
extract_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(extract_text)

图片

此操作可以重复应用于图像中包含的每个单词/短语。

5. docTR

最后,我们涵盖了用于从文档中检测和识别文本的最后一个Python包:docTR。它可以将文档解释为PDF或图像,然后将其传递给两阶段方法。在docTR中,文本检测模型(DBNet或LinkNet)后跟文本识别的CRNN模型。由于使用了这两个深度学习框架,这个库要求安装Pytorch和Tensorflow。

! pip install python-doctr
# for TensorFlow
! pip install "python-doctr[tf]"
# for PyTorch
! pip install "python-doctr[torch]"

然后,我们导入使用docTR的相关库并加载模型,它是一个两步方法。实际上,我们需要指定文本检测和文本识别的DBNet和CRNN的模型,文本检测和文本识别的后端模型:

from doctr.io import DocumentFile
from doctr.models import ocr_predictor
model = ocr_predictor(det_arch = 'db_resnet50',
                      reco_arch = 'crnn_vgg16_bn',
                      pretrained = True
                     )

我们最终读取文件,使用预训练模型,并将输出导出为嵌套字典:

# read file
img = DocumentFile.from_images(img_path1)

# use pre-trained model
result = model(img)

# export the result as a nested dict
extract_info = result.export()

这是非常长的输出:

{'pages': [{'page_idx': 0, 'dimensions': (678, 1024), 'orientation': {'value': None, 'confidence': None},...

为更好地可视化,最好使用双重循环,仅获取我们感兴趣的信息:

for obj1 in extract_info['pages'][0]["blocks"]:
    for obj2 in obj1["lines"]:
        for obj3 in obj2["words"]:
            print("{}: {}".format(obj3["geometry"],obj3["value"]))

图片

docTR是从图像或PDF中提取有价值信息的另一个好选择。

结论

五个工具各有优点和缺点。当选择这些软件包之一时,首先考虑您正在分析的数据的语言。如果考虑到非英语语言,EasyOCR可能是最适合的选择,因为它具有更广泛的语言覆盖和更好的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1229358.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

YOLOv8改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数

一、本文介绍 这篇文章介绍了YOLOv8的重大改进,特别是在损失函数方面的创新。它不仅包括了多种IoU损失函数的改进和变体,如SIoU、WIoU、GIoU、DIoU、EIOU、CIoU,还融合了“Focus”思想,创造了一系列新的损失函数。这些组合形式的…

OpenAI 地震!首席执行官被解雇,背后的原因是?

11月17日,ChatGPT的制造商OpenAI表示,经过审查后发现联合创始人兼首席执行官 Sam Altman与董事会“沟通时并不一贯坦诚”,因此公司已经决定解雇他。这家人工智能(AI)公司在一份声明中表示:“董事会不再相信…

美团外卖9元每周星期一开工外卖红包优惠券怎么领取?

美团外卖9元周一开工红包活动时间是什么时候? 美团外卖9元周一开工红包优惠券是指每周星期一可以领取的美团外卖红包优惠券,在美团外卖周一开工红包领取活动时间内可领取到9元周一开工美团外卖红包优惠券;(温馨提醒:如…

2023年中国全自动烘干机产业链、产能及发展趋势分析[图]

全自动烘干机设备是工业化生产制造过程中不可缺少的一种机械设备设备,它广泛应用于工业化工原料加工中药材烘干、农副产品加工等,因此制造了多种干燥设备,目前有多层网带干燥机、热泵干燥机、微波干燥机和冷冻干燥机四种自动干燥机&#xff0…

jetbrains ai 提示该地区不可用的百分百解决方案,亲测有效

问题 申请 jetbrains 的 ai assistant 白名单已经通过,但是在使用 ai assistant 的过程中提示 The usage of the service is not permitted in your location ,我所在的地区是中国,目前该插件是对中国大陆关闭的。 刚开始我怀疑是代理的问题&#xff…

ckplayer自己定义风格播放器的开发记录

CKplayer是一款基于Flash和HTML5技术的开源视频播放器,支持多种格式的音视频播放,并且具有优秀的兼容性和扩展性。 它不仅可以在网页上播放本地或者网络上的视频,还可以通过代码嵌入到网页中,实现更加个性化的播放效果。CKplayer…

【cpolar】搭建我的世界Java版服务器,公网远程联机

🎥 个人主页:深鱼~🔥收录专栏:cpolar🌄欢迎 👍点赞✍评论⭐收藏 目录 前言: 1. 搭建我的世界服务器 1.1 服务器安装java环境 1.2 配置服务端 2. 测试局域网联机 3. 公网远程联机 3.1 安…

【Java程序员面试专栏 专业技能篇】Java SE核心面试指引(一):基础知识考察

关于Java SE部分的核心知识进行一网打尽,包括四部分:基础知识考察、面向对象思想、核心机制策略、Java新特性,通过一篇文章串联面试重点,并且帮助加强日常基础知识的理解,全局思维导图如下所示 本篇Blog为第一部分:基础知识考察,子节点表示追问或同级提问 基本概念 …

数据仓库高级面试题

数仓高内聚低耦合是怎么做的 定义 高内聚:强调模块内部的相对独立性,要求模块内部的元素尽可能的完成一个功能,不混杂其他功能,从而使模块保持简洁,易于理解和管理。 低耦合:模块之间的耦合度要尽可能的…

壹基金为爱同行走进绿水青山,为乡村儿童送去健康水

壹基金为爱同行公益践行活动发起于2013年,截至2022年底,累计有63,319名线下参与队员,走过了8个城市。2023年,为爱同行的“壹家人”再次出发,走进“绿水青山就是金山银山”理念诞生地——浙江安吉余村,徒步18公里,为乡村儿童喝上足量、干净的饮用水筹集善款。本次活动获得了当地…

CorelDraw2024(CDR)- 矢量图制作软件介绍

在当今数字化时代,平面设计已成为营销、品牌推广和创意表达中不可或缺的元素。平面设计必备三大软件Adebo PhotoShop、CorelDraw、Adobe illustrator, 今天小编就详细介绍其中之一的CorelDraw软件。为什么这款软件在设计界赢得了声誉,并成为了设计师的无…

深度学习之基于YoloV5-Pose的人体姿态检测可视化系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 深度学习之基于 YOLOv5-Pose 的人体姿态检测可视化系统介绍YOLOv5-Pose 简介系统特点系统架构使用方法 二、功能三、系统四. 总结 一项目简介 深度学习之基…

大白话解释什么类加载机制

大家好,我是伍六七。 今天我们来聊聊一个 Java 面试必考基础题目:类加载机制和双亲委派机制。 Java 类的加载机制是 Java 虚拟机(JVM)中类加载(Class Loading)和链接(Linking)的过…

大学生如何免费认证,下载,安装MATLAB

下载 打开学校图书馆官网 选择版本后,点击下载 注册绑定个人认证 前提!需要有学校邮箱【以edu.cn结尾的】 进入mathworks官网 注册账户 安装 下载完后,打开 选择:setup 安装程序 勾选:是;选择&#xf…

【汇编】数据在哪里?有多长、div指令实现除法、dup设置内存空间

文章目录 前言一、汇编语言中数据位置的表达1.1 汇编中有哪几种数1.立即数(idata):2.寄存器(Register):3.内存(Memory):4.段地址(Segment Address&#xff0c…

卫生纸标准及鉴别

一、标准分类及含义 (1)标准分类 ①GB——国家强制标准(即最低标准) ②GB/T——国家推荐标准 ③QB——轻工行业标准 ④QB/T——轻工行业推荐标准 (2)含义 ①国家标准是指国家标准化主管机构批准发布的。…

RT-DETR优化改进:SEAM、MultiSEAM分割物与物相互遮挡、分割小目标性能

🚀🚀🚀本文改进:SEAM、MultiSEAM分割物体与物体相互遮挡性能 🚀🚀🚀SEAM、MultiSEAM分割物与物相互遮挡、分割小目标性能 🚀🚀🚀RT-DETR改进创新专栏:http://t.csdnimg.cn/vuQTz 学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研; RT-DETR模型创新…

[和ChatGPT学编程]Python Requests 简介

requests 是一个流行的 Python 库,用于发送 HTTP 请求。它提供了简洁而友好的 API,使得发送 HTTP 请求变得简单而直观。requests 具有许多强大的功能,适用于各种 HTTP 请求场景,包括 GET、POST、PUT、DELETE 等。 目录 requests 库…

Tomcat 启动 HTTP状态 404 - 未找到

Tomcat 启动 HTTP状态 404 - 未找到 tomcat启动的项目访问地址实际是根据应用程序上下文的目录来决定的,而不是服务器那边配置的URL的地址来决定的

nginx学习(3)Nginx 负载均衡

Nginx 负载均衡 实战案例 实现效果 浏览器地址栏输入地址 http://172.31.0.99/oa/a.html,负载均衡效果,平均在 8083 和 8084 端口中,刷新浏览器,显示不同 一、配置 1、先创建2个文件夹tomcat8083和tomcat8084,并将…