PyTorch神经网络-激励函数

news2025/1/19 2:57:17

在PyTorch 神经网络当中,使用激励函数处理非线性的问题,普通的神经网络出来的数据一般是线性的关系,但是遇到比较复杂的数据的话,需要激励函数处理一些比较难以处理的问题,非线性结果就是其中的情况之一。


FAQ:为什么要使用激励函数?

  • 在简易乃至复杂的神经网络当中,对于神经元的数据结果为线性的时候,可能就会导致后面预测无法达到预期的效果,线性可能是一个不具体的一个范围,所以需要加入激励函数(一般是非线性的)去将数据进行处理

在少量的神经网络当中,一般使用 RELU激励函数,而在比较复杂的神经网络(包含循环神经网络RNN)当中,一般会使用 RELU或者 TANH函数进行处理
在这里插入图片描述

激励函数 Activation

下图为 Kaggle 编写的四种激励函数,分别是(relu,sigmoid,tanh和softplus)
在这里插入图片描述
可以看到上面四个激励函数当x轴为输出的数据,可以理解成为神经网络的输出结果,然后将神经网络素输出结果加入激活函数,也就四上图四个激励函数对应的y轴数据,经过了激励函数处理之后,结果就有了限制,这个就是不同的激励函数带来的不同效果

程序源码:

import torch
import torch.nn.functional as F

from torch.autograd import Variable
import matplotlib.pyplot as plt

# fake
x = torch.linspace(-10,10,200)
x = Variable(x)
x_np = x.data.numpy()  # change the value to tensor


y_relu = F.relu(x).data.numpy()
y_sigmoid = F.sigmoid(x).data.numpy()
y_tanh = F.tanh(x).data.numpy()
y_softplus = F.softplus(x).data.numpy()


plt.figure(1,figsize=(8,6))
plt.subplot(221)
plt.plot(x_np,y_relu,c='red',label='relu')
plt.ylim((-1,11))
plt.legend(loc='best')


plt.subplot(222)
plt.plot(x_np,y_sigmoid,c='green',label='sigmoid')
plt.ylim((-0.2,1.2))
plt.legend(loc='best')


plt.subplot(223)
plt.plot(x_np,y_tanh,c='blue',label='y_tanh')
plt.ylim((-1.2,2.2))
plt.legend(loc='best')


plt.subplot(224)
plt.plot(x_np,y_softplus,c='yellow',label='y_softplus')
plt.ylim((-0.2,11))
plt.legend(loc='best')

🐱神经网络浅试

当了解了神经网络相关的原理之后,可以尝试着结合激励函数进行一个简单的Demo编写
主要氛围以下几个步骤:
(1)创建数据集->(2)建立神经网络->(3)训练数据->预测(显示验证可选)

1. 创建数据集

建立一些数据,去模拟真实的情况比如一个一元二次函数: y = a * x^2 + b, 我们给 y 数据加上一点噪声来更加真实的展示它。

import torch
import matplotlib.pyplot as plt

x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size())                 # noisy y data (tensor), shape=(100, 1)

# 画图
plt.scatter(x.data.numpy(), y.data.numpy())
plt.show()
2. 建立一个神经网络:

我们可以直接运用 torch 中的体系. 先定义所有的层属性(init()), 然后再一层层搭建(forward(x))层于层的关系链接. 建立关系的时候, 我们会用到激励函数。

import torch
import torch.nn.functional as F     # 激励函数都在这

class Net(torch.nn.Module):  # 继承 torch 的 Module
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()     # 继承 __init__ 功能
        # 定义每层用什么样的形式
        self.hidden = torch.nn.Linear(n_feature, n_hidden)   # 隐藏层线性输出
        self.predict = torch.nn.Linear(n_hidden, n_output)   # 输出层线性输出

    def forward(self, x):   # 这同时也是 Module 中的 forward 功能
        # 正向传播输入值, 神经网络分析出输出值
        x = F.relu(self.hidden(x))      # 激励函数(隐藏层的线性值)
        x = self.predict(x)             # 输出值
        return x

net = Net(n_feature=1, n_hidden=10, n_output=1)

print(net)  # net 的结构
"""
Net (
  (hidden): Linear (1 -> 10)
  (predict): Linear (10 -> 1)
)
"""
3.训练网络

训练的步骤如下:

# optimizer 是训练的工具
optimizer = torch.optim.SGD(net.parameters(), lr=0.2)  # 传入 net 的所有参数, 学习率
loss_func = torch.nn.MSELoss()      # 预测值和真实值的误差计算公式 (均方差)

for t in range(100):
    prediction = net(x)     # 喂给 net 训练数据 x, 输出预测值

    loss = loss_func(prediction, y)     # 计算两者的误差

    optimizer.zero_grad()   # 清空上一步的残余更新参数值
    loss.backward()         # 误差反向传播, 计算参数更新值
    optimizer.step()        # 将参数更新值施加到 net 的 parameters 上
4.可视化训练的过程
import matplotlib.pyplot as plt

plt.ion()   # 画图
plt.show()

for t in range(200):

    ...
    loss.backward()
    optimizer.step()

    # 接着上面来
    if t % 5 == 0:
        # plot and show learning process
        plt.cla()
        plt.scatter(x.data.numpy(), y.data.numpy())
        plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
        plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color':  'red'})
        plt.pause(0.1)

结合上述步骤,总结出代码如下,在这里的程序更改的训练次数为 100次

import torch 
import torch.nn.functional as F

from torch.autograd import Variable
import matplotlib.pyplot as plt  # 数据可视化处理工具


# 输出数据
x = torch.unsqueeze(torch.linspace(-1,1,100),dim  =1)
y = x.pow(2) + 0.2*torch.rand(x.size())  # x 的二次方 + 一些随机噪点


plt.scatter(x.data.numpy(),y.data.numpy())
plt.show()


# 定义神经网络
class Net(torch.nn.Module):
    def __init__(self,n_features,n_hidden,n_output):
        # 搭建层所需要的信息
        super(Net,self).__init__()  # 初始化函数继承
        self.hidden = torch.nn.Linear(n_features,n_hidden)  # 隐藏层包含了,少的输出和输出
        self.predict = torch.nn.Linear(n_hidden,1)  # 输出值为 1,只是一个值
        
        
    
    def forward(self,x):
        # 前一层的信息,也就是x
        x = F.relu(self.hidden(x))  # 激励函数激活
        x = self.predict(x)  # 输出x
        return x


# Net(1,100,1)中的1表示输出数据为1个,100 为神经元个数,最后的1表示输出的数据,也是为1
net = Net(1,100,1)
print(net)


# 优化
optimizer = torch.optim.SGD(net.parameters(),lr = 0.5) # lr < 1
loss_function = torch.nn.MSELoss()

plt.ion()
plt.show()


for t in range(100):
    prediction = net(x)
    
    loss = loss_function(prediction,y)
    optimizer.zero_grad()  # 将传进来的参数的地图设置为零
    loss.backward()  # 反向传递过程
    optimizer.step()  # 优化梯度
    
    if t % 5 == 0:
        plt.cla()
        plt.scatter(x.data.numpy(),y.data.numpy())
        plt.plot(x.data.numpy(),prediction.data.numpy(),'r-',lw=5)
        plt.text(0.5,0,'Loss%.4f'%loss.data.numpy(),fontdict={'size':20,'color':'red'})
        plt.pause(0.1)
plt.ioff()
plt.show()

请添加图片描述

请添加图片描述

请添加图片描述
请添加图片描述请添加图片描述请添加图片描述
请添加图片描述

请添加图片描述请添加图片描述

请添加图片描述请添加图片描述

请添加图片描述

请添加图片描述
请添加图片描述

请添加图片描述

最后一张图为训练拟合的结果图,可以看到,红色的预测线将传入的随机点有了很接近的拟合,说明神经网络内的训练和优化有了很大的效果。


🌸🌸🌸完结撒花🌸🌸🌸


🌈🌈Redamancy🌈🌈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1228359.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LV.12 D18 中断处理 学习笔记

一、ARM的异常处理机制及工程代码结构 1.1异常概念 处理器在正常执行程序的过程中可能会遇到一些不正常的事件发生 这时处理器就要将当前的程序暂停下来转而去处理这个异常的事件 异常事件处理完成之后再返回到被异常打断的点继续执行程序。 1.2异常处理机制 不同的处…

【算法】滑动窗口题单——2.不定长滑动窗口(求最长/最大)

文章目录 3. 无重复字符的最长子串1493. 删掉一个元素以后全为 1 的最长子数组904. 水果成篮1695. 删除子数组的最大得分2841. 几乎唯一子数组的最大和2024. 考试的最大困扰度1004. 最大连续1的个数 III1438. 绝对差不超过限制的最长连续子数组2401. 最长优雅子数组解法1——维…

nodejs微信小程序-实验室上机管理系统的设计与实现-安卓-python-PHP-计算机毕业设计

用户&#xff1a;管理员、教师、学生 基础功能&#xff1a;管理课表、管理机房情况、预约机房预约&#xff1b;权限不同&#xff0c;预约类型不同&#xff0c;教师可选课堂预约和个人&#xff1b;课堂预约。 目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 …

容斥 C. Strange Function改编题

补题&#xff1a; 题目详情 - 9.段坤爱取模%%% - SUSTOJ 本题或许是参考 Problem - C - Codeforces 根据题意&#xff0c;f(i)就是不能被整除的最小的一个质因子。 打表发现&#xff0c;当15个质因子相乘后&#xff0c;长度就大于18。 因此可以知道小于等于1e16内的正整数x…

(动手学习深度学习)第13章 计算机视觉---微调

文章目录 微调总结 微调代码实现 微调 总结 微调通过使用在大数据上的恶道的预训练好的模型来初始化模型权重来完成提升精度。预训练模型质量很重要微调通常速度更快、精确度更高 微调代码实现 导入相关库 %matplotlib inline import os import torch import torchvision f…

java文件压缩加密,使用流的方式

使用net.lingala.zip4j来进行文件加密压缩。 添加依赖net.lingala.zip4j包依赖&#xff0c;这里使用的是最新的包2.11.5版本。 <dependency><groupId>net.lingala.zip4j</groupId><artifactId>zip4j</artifactId><version>${zip4j.versi…

丹麦能源袭击预示着更关键的基础设施成为目标

5 月&#xff0c;22 个丹麦能源部门组织在与俄罗斯 Sandworm APT 部分相关的攻击中受到损害。 丹麦关键基础设施安全非营利组织 SektorCERT 的一份新报告描述了不同的攻击者群体利用合勤防火墙设备中的多个关键漏洞&#xff08;包括两个零日漏洞&#xff09;侵入工业机械&…

Dockerfile自定义镜像以及案例分析

文章目录 一、Dockerfile自定义镜像1.1 镜像结构1.2 Dockerfile语法 二、构建Java项目三、基于java8构建java四、小结 一、Dockerfile自定义镜像 常见的镜像在DockerHub就能找到&#xff0c;但是我们自己写的项目就必须自己构建镜像了。 而要自定义镜像&#xff0c;就必须先了…

boomYouth

上一周实在是过得太颓废了&#xff0c;我感觉还是要把自己的规划做好一下&#xff1a; 周计划 这周截至周四&#xff0c;我可以用vue简单的画完登陆注册的界面并且弄一点预处理&#xff1a; 周一 的话可以把这些都学一下&#xff1a; 父传子&#xff0c;子传父&#xff1a…

配置iTerm2打开自动执行命令

打开iTerm2&#xff0c;commado&#xff0c;打开profies->edit profies&#xff0c;点击号&#xff0c;创建一个新的profile 在新的profile中填写 name&#xff1a;随意 command&#xff1a;Login Shell Send text at start&#xff1a;执行脚本的命令&#xff0c;不想写路…

python django 小程序图书借阅源码

开发工具&#xff1a; PyCharm&#xff0c;mysql5.7&#xff0c;微信开发者工具 技术说明&#xff1a; python django html 小程序 功能介绍&#xff1a; 用户端&#xff1a; 登录注册&#xff08;含授权登录&#xff09; 首页显示搜索图书&#xff0c;轮播图&#xff0…

某60区块链安全之不安全的随机数实战一

区块链安全 文章目录 区块链安全不安全的随机数实战一实验目的实验环境实验工具实验原理实验内容攻击过程分析合约源代码漏洞EXP利用 不安全的随机数实战一 实验目的 学会使用python3的web3模块 学会以太坊不安全的随机数漏洞分析及利用 实验环境 Ubuntu18.04操作机 实验工…

环境配置|GitHub——解决Github无法显示图片以及README无法显示图片

一、问题背景 最近在整理之前写过的实验、项目&#xff0c;打算把这些东西写成blog&#xff0c;并把工程文件整理上传到Github上。但在上传README文件的时候&#xff0c;发现github无法显示README中的图片&#xff0c;如下图所示&#xff1a; 在README中该图片路径为&#xff1…

Unity Meta Quest 一体机开发(七):配置玩家 Hand Grab 功能

文章目录 &#x1f4d5;教程说明&#x1f4d5;玩家物体配置 Hand Grab Interactor⭐添加 Hand Grab Interactor 物体⭐激活 Hand Grab Visual 和 Hand Grab Glow⭐更新 Best Hover Interactor Group &#x1f4d5;配置可抓取物体&#xff08;无抓取手势&#xff09;⭐刚体和碰撞…

【算法】树形DP③ 监控二叉树 ⭐(二叉树染色二叉树灯饰)!

文章目录 前期知识 & 相关链接例题968. 监控二叉树解法1——标记状态贪心解法2——动态规划 相关练习题目P2458 [SDOI2006] 保安站岗⭐&#xff08;有多个儿子节点&#xff09;&#x1f6b9;LCP 34. 二叉树染色⭐&#xff08;每个节点 单独dp[k 1]数组&#xff09;LCP 64.…

时间序列预测实战(十七)利用Prophet实现电力负荷长期预测(附代码+数据集+详细讲解)

一、本文介绍 Prophet是一个由Facebook开发的开源工具&#xff0c;用于时间序列预测。这个工具特别适合于具有强季节性影响和多个历史数据季节的业务时间序列数据。Prophet的主要思想是将数据分解为如下三个部分&#xff1a;趋势、季节性、节假日和特殊事件。这个模型非常适合…

GIT无效的源路径/URL

ssh-add /Users/haijunyan/.ssh/id_rsa ssh-add -K /Users/haijunyan/.ssh/id_rsa

SQL基础理论篇(七):多表关联的连接算法

文章目录 简介Nested LoopsMerge JoinHash Join总结参考文献 简介 多表之间基础的关联算法一共有三种&#xff1a; Hash JoinNested LoopsMerge Join 还有很多基于这三种基础算法的变体&#xff0c;以Nested Loops为例&#xff0c;就有用于in和exist的半连接&#xff08;Nes…

【Android Jetpack】Hilt的理解与浅析

文章目录 依赖注入DaggerHiltKoin添加依赖项Hilt常用注解的含义HiltAndroidAppAndroidEntryPointInjectModuleInstallInProvidesEntryPoint Hilt组件生命周期和作用域如何使用 Hilt 进行依赖注入 本文只是进行了简单入门&#xff0c;博客仅当做笔记用。 依赖注入 依赖注入是一…

文档向量化工具(一):Apache Tika介绍

Apache Tika是什么&#xff1f;能干什么&#xff1f; Apache Tika是一个内容分析工具包。 该工具包可以从一千多种不同的文件类型&#xff08;如PPT、XLS和PDF&#xff09;中检测并提取元数据和文本。 所有这些文件类型都可以通过同一个接口进行解析&#xff0c;这使得Tika在…