linux中利用fork复制进程,printf隐藏的缓冲区,写时拷贝技术,进程的逻辑地址与物理地址

news2025/3/12 13:27:00

1.prinf隐藏的缓冲区

1.思考:为什么会有缓冲区的存在?

2.演示及思考?

1).演示缓存区没有存在感
那为什么我们感觉不到缓冲区的存在呢?我们要打印东西直接就打印了呢?
我们用代码演示一下:

比如打开一个main.c,输入内容如下:

 #include <stdio.h>

int main()
 {
    printf("hello");
 }

我们运行的之后直接就打印了hello,好像没有感觉到缓冲区 的存在;
原因是因为此时程序已经结束了,它会刷新缓冲区的内容;

2)演示缓冲区的存在

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
int main()
 {
 printf("hello");
 sleep(3);
 exit(0);
}

3.强制刷新
(1)方法一:遇到\n自动刷新
printf("hello\n");
(2)使用fflush刷新屏幕
fflush(stdout);

  1. _exit与exit

exit是先刷新缓冲区,然后再调用_exit(真正的退出);
_exit直接退出,不会刷新缓冲区;

比如如下的代码:

 #include <stdio.h>
 #include <stdlib.h>
 #include <unistd.h>

int main()
 {
 printf("hello");
 //fflush(stdout);
 sleep(3);
 _exit(0);//注意这里,不输出hello
 }

5.总结
printf将内容先写入到缓冲区中,缓冲区刷新到界面(屏幕)上的条件是:
(1)缓冲区放满
(2)缓冲区未满,强制刷新缓冲区到屏幕(方法一:\n;方法二:主动刷新:fflush(stdout));
(3)程序结束时,自动刷新缓冲区:exit方法;

6.为什么会有缓冲区的存在?

屏幕是一个硬件设备,是由操作系统来管理的,因此printf打印的时候需要调用操作系统的接口才能完成,这个时候我们需要从用户态切换到内核态,这个开销是比较大的.

2.fork复制进程  (重点)

1)shell:

在计算机科学中,Shell俗称壳(用来区别于核),是指“为使用者提供操作界面”的软件(command interpreter,命令解析器)。它类似于DOS下的COMMAND.COM和后来的cmd.exe。它接收用户命令,然后调用相应的应用程序。

我们就是通过命令解释器(称为shell)(bash是命令解释器中的一种)和内核和系统进行交互的(Windows通过图形界面进行交互的);例如我们把ls交给bash,bash帮我们运行ls,然后把结果给用户;

2)fork如何复制进程?

fork是把已有的进程复制一份,当然把PCB也复制了一份,然后申请一个PID,子进程的PID=父进程的PID+1;

   如果父子进程想要做不同的事情,那么我们通过返回值来判断;
man fork

代码如下(代码下去自己练习,理解):

#include <stdio.h>
#include <unistd.h>
#include <assert.h>
#include <stdlib.h>

int main()
{
    char *s=NULL;
    int n=0;//控制父子进程执行的次数;

    pid_t id=fork();
    assert(id!=-1);

    if(id==0)//子进程
    {
        s="child";
        n=3;
    }
    else//父进程
    {
        s="parent";
        n=7;
    }
     //父子进程
    int i=0;
    for(;i<n;i++)
    {
        printf("s=%s\n",s);
        sleep(1);
    }
    exit(0);
}

父子进程是两个独立的进程,各自执行各自的代码;如果父子进程要做不一样的事情,就通过if  else返回值来操作;

3)fork的时机

fork产生的这个子进程不是从头开始执行的,而是从fork之后开始执行的,就是说fork下面的代码子进程才开始执行,具体的是说从返回值这里子进程开始执行,子进程不会再fork了,所以不会出现子进程再去fork产生一个子进程的问题.
也就是说:从返回值这里开始,父进程返回子进程的PID,子进程返回0;

4)getppid与getpid

getppid:得到一个进程的父进程的PID;
getpid:得到当前进程的PID;

man getpid;
man getppid

3.fork补充:

操作系统精髓与设计原理第101页;

4.如何学好多进程以及面试考点?

1)充分理解多进程的概念(每次程序多执行几次,多理解一下)

2)考点:

fork多以笔试的形式出现;

面试的考点:

例如:

1.我们在进程中看到的地址是进程的物理地址还是逻辑地址?(为什么这么问,单进程不分物理地址和逻辑地址吗);

2.进程同步设计(比如多进程抢夺资源)(难点,用程序实现)

3.fork与文件指针

(1)fork 以后,父进程打开的文件指针位置在子进程里面是否一样?(先open再fork)
(2)能否用代码简单的验证一下?
(3)先fork再打开文件父子进程是否共享偏移量?父进程打开的文件指针位置在子进程里面是否一样?能否用代码简单验证一下.(先fork再open会怎么样?)

4.fork+exec

5.僵死进程原因及处理方法;

5.内存管理相关概念

1.简单分页 逻辑页 物理页 页表的概念:
从哲学层次看操作系统157页(需要详细看)

2.虚拟内存:

虚拟内存提供的三个重要的能力:
1) 它将主存看成是一个存储在磁盘上的地址空间的高速缓存,在主存中只保存活动区域,根据需要在磁盘和主存之间来回传送数据,使得能够运行比内存大的多的进程。
2) 它为每个进程提供了一致的地址空间,从而简化了存储器管理.
3) 它保护每个进程的地址空间不被其他进程破坏 .

6.写时拷贝技术

不采用写时拷贝,如何fork?

第一:复制开销比较大;
第二:占用内存空间;
所以我们对fork复制进程的过程就做了一个优化-----写时拷贝技术;

综上,就是fork的时候,子进程直接把父进程的页表复制过来,子进程发生写入(修改)的时候才分配内存复制,然后进行相应的页表修改.

写时拷贝是一种可以推迟甚至免除拷贝数据的技术.

内核设计与实现22页;

7.我们在进程中看到的地址是进程的物理地址还是逻辑地址?

我们先来看代码: (打印n的地址)

 printf("s=%s,pid=%d,ppid=%d,n的地址为:%p\n",s,getpid(),getppid(),&n);//打印n的地址

 

8.进程的逻辑地址与物理地址

父子进程中n的值都不一样,那么我们为什么看到n的地址是相同的呢?

我们在进程中看到的地址就是进程的逻辑地址(进程的4G空间,从0开始,一直往上增长);

32位系统上,都有一个0-4G的地址空间:
在Linux系统上,最上面这1G由内核使用,下面3G是用户在使用;
为什么是4G呢?在32位系统上,能够寻址的范围就是2^32=4294967296字节/1000=4294976K /1000=4294M /1000=4.29 G 约等于4G  .

而我们把所有的地址都编号,

1K=2^10 ,4K=2^12
物理页面能有多少个页面呢?4G/4K=2^32 / 212=2(32-12)=2^20个页面

所以说,父子进程逻辑地址一样,但是物理地址是不一样的;

以前我们的程序都是只有一个进程,我们逻辑地址相同,那么我们的逻辑地址映射过去的物理地址肯定也是相同的一块空间,只有一个进程,就不用刻意去理解逻辑地址和物理地址的差异;对于同一进程,逻辑地址相同,物理地址肯定相同.
现在,我们的程序都是多进程的,逻辑地址相同,对应的物理地址就不一定相同了;也就是说A进程和B进程的逻辑地址相同,就不能说明物理地址一定相同,我们还需要看各自的页表,看看页表是否相同.(页表就是逻辑页和物理页的映射关系);
不同进程的逻辑地址是没有比较的意义的;

9.为什么在程序中不直接使用物理地址呢?

我们无法预知哪些物理地址是空闲的,同时空闲的也是动态变化的,程序在不断的申请释放空间中.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1227886.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【机器学习】划分训练集和测试集的方法

在机器学习中&#xff0c;我们的模型建立完成后&#xff0c;通常要根据评估指标来对模型进行评估&#xff0c;以此来判断模型的可用性。而评估指标主要的目的是让模型在未知数据上的预测能力最好。因此&#xff0c;我们在模型训练之前&#xff0c;要对训练集和测试集进行划分。…

python-opencv 培训课程笔记(2)

python-opencv 培训课程笔记&#xff08;2&#xff09; 1.图像格式转换 先看一下cvtColor函数的例子 #默认加载彩图 pathrD:\learn\photo\cv\cat.jpg# imread(path,way) #way0 灰度图。way1 彩图 #默认彩图 imgcv2.imread(path) img_dogcv2.imread(path_dog) #图片格式的转化…

Lesson 04 模板入门

C&#xff1a;渴望力量吗&#xff0c;少年&#xff1f; 文章目录 一、泛型编程1. 引入2. 函数模板&#xff08;1&#xff09;函数模板概念&#xff08;2&#xff09;函数模板格式&#xff08;3&#xff09;函数模板的原理&#xff08;4&#xff09;函数模板的实例化&#xff08…

git rebase 和 git merge的区别?以及你对它们的理解?

文章目录 前言是什么分析区别后言 前言 hello world欢迎来到前端的新世界 &#x1f61c;当前文章系列专栏&#xff1a;git操作相关 &#x1f431;‍&#x1f453;博主在前端领域还有很多知识和技术需要掌握&#xff0c;正在不断努力填补技术短板。(如果出现错误&#xff0c;感谢…

MVSNet论文笔记

MVSNet论文笔记 摘要1 引言2 相关基础2.1 多视图立体视觉重建&#xff08;MVS Reconstruction&#xff09;2.2 基于学习的立体视觉&#xff08;Learned Stereo&#xff09;2.3 基于学习的多视图的立体视觉&#xff08;Learned MVS&#xff09; Yao, Y., Luo, Z., Li, S., Fang,…

阿坤老师的独特瓷器(Java详解)

一、题目描述 示例&#xff1a; 输入&#xff1a; 5 3 4 5 6 2 5 3 7 6 5 输出&#xff1a; 3 二、题解 思路分析&#xff1a; 题目要求我们计算出“独特瓷器”的个数&#xff0c;而“独特瓷器”是指对于瓷器A&#xff0c;没有另一个瓷器B&#xff0c;直径和高度都大于A。则…

系列三、双亲委派 沙箱安全 机制

一、概述 当一个类收到了类加载的请求&#xff0c;它首先不会尝试自己去加载这个类&#xff0c;而是把这个请求委派给父类去完成&#xff0c;每一层的类加载器都是如此&#xff0c;因此所有的请求最终都应该传送到启动类加载器中&#xff0c;只有当父类加载器反馈自己无法完成…

算法通关村——数字中的统计、溢出、进制转换处理模板

数字与数学基础问题 1、数字统计 1.1、符号统计 LeetCode1822. 给定一个数组&#xff0c;求所有元素的乘积的符号&#xff0c;如果最终答案是负的返回-1&#xff0c;如果最终答案是正的返回1&#xff0c;如果答案是0返回0. 这题其实只用看数组中0和负数的个数就好了&#x…

基于卡尔曼滤波实现行人目标跟踪

目录 1. 作者介绍2. 目标跟踪算法介绍2.1 目标跟踪背景2.2 目标跟踪任务分类2.3 目标跟踪遇到的问题2.4 目标跟踪方法 3. 卡尔曼滤波的目标跟踪算法介绍3.1 所用数据视频说明3.2 卡尔曼滤波3.3 单目标跟踪算法3.3.1 IOU匹配算法3.3.2 卡尔曼滤波的使用方法 3.4 多目标跟踪算法 …

【顺序表的实现】

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 前言 1. 数据结构相关概念 1、什么是数据结构 2、为什么需要数据结构&#xff1f; 2、顺序表 1、顺序表的概念及结构 1.1 线性表 2、顺序表分类 3、动态顺序表的实现 总…

高效管理文件:如何通过文件数量归类提高工作效率

在日常生活和工作中&#xff0c;需要处理大量的文件和资料。然而&#xff0c;如果这些文件没有得到妥善的管理&#xff0c;就会使得我们花费大量的时间和精力去寻找和整理它们。对于大量文件&#xff0c;按照数量归类可以使得文件管理更加有序和规范。根据文件的数量建立相应的…

中国电影票房排行数据爬取及分析可视化

大家好&#xff0c;我是带我去滑雪&#xff01; 对中国电影票房排行数据的爬取和分析可视化具有多方面的用处&#xff1a;例如了解电影市场的历史趋势&#xff0c;包括不同类型电影的受欢迎程度、票房的季节性波动。识别观众对于不同类型电影的偏好&#xff0c;为电影制片方提供…

Linux下快速确定目标服务器支持哪些协议和密码套件

实现原理是利用TLS协议的特点和握手过程来进行测试和解析响应来确定目标服务器支持哪些TLS协议和密码套件。 在TLS握手过程中&#xff0c;客户端和服务器会协商并使用相同的TLS协议版本和密码套件来进行通信。通过发送特定的握手请求并分析响应&#xff0c;可以确定目标服务器…

Linux 零拷贝splice函数

Linux splice 函数简介 splice 是 Linux 系统中用于在两个文件描述符之间移动数据的系统调用。它的主要作用是在两个文件描述符之间传输数据&#xff0c;而无需在用户空间进行数据拷贝。也是零拷贝操作. 函数原型 #include <fcntl.h> ssize_t splice(int fd_in, loff_…

git常用命令和参数有哪些?【git看这一篇就够了】

文章目录 前言常用命令有哪些git速查表奉上常用参数后言 前言 hello world欢迎来到前端的新世界 &#x1f61c;当前文章系列专栏&#xff1a;git操作相关 &#x1f431;‍&#x1f453;博主在前端领域还有很多知识和技术需要掌握&#xff0c;正在不断努力填补技术短板。(如果出…

数电实验-----实现74LS139芯片扩展为3-8译码器以及应用(Quartus II )

目录 一、74LS139芯片介绍 芯片管脚 芯片功能表 二、2-4译码器扩展为3-8译码器 1.扩展原理 2.电路图连接 3.仿真结果 三、3-8译码器的应用&#xff08;基于74ls139芯片&#xff09; 1.三变量表决器 2.奇偶校验电路 一、74LS139芯片介绍 74LS139芯片是属于2-4译码器…

设计模式-组合模式-笔记

“数据结构”模式 常常有一些组件在内部具有特定的数据结构&#xff0c;如果让客户程序依赖这些特定数据结构&#xff0c;将极大地破坏组件的复用。这时候&#xff0c;将这些特定数据结构封装在内部&#xff0c;在外部提供统一的接口&#xff0c;来实现与特定数据结构无关的访…

【libGDX】使用ShapeRenderer绘制几何图形

1 ShapeRenderer 简介 ShapeRenderer 是 libGDX 中用于绘制基本形状的工具之一。它可以绘制点、线、矩形、多边形、圆形、椭圆形、扇形、立方体、圆锥体等几何图形。这对于在游戏或图形应用程序中绘制简单的形状是很有用的。 ShapeRenderer 的主要方法如下&#xff1a; 1&…

10_6 input输入子系统,流程解析

简单分层 应用层 内核层 --------------------------- input handler 数据处理层 driver/input/evdev.c1.和用户空间交互,实现fops2.不知道数据怎么得到的,但是可以把数据上传给用户--------------------------- input core层1.维护上面和下面的两个链表2.为上下两层提供接口--…

深度学习:欠拟合与过拟合

1 定义 1.1 模型欠拟合 AI模型的欠拟合&#xff08;Underfitting&#xff09;发生在模型未能充分学习训练数据中的模式和结构时&#xff0c;导致它在训练集和验证集上都表现不佳。欠拟合通常是由于模型太过简单&#xff0c;没有足够的能力捕捉到数据的复杂性和细节。 1.2 模型…