文章目录
- 4. Pod详解
- 4.1 Pod介绍
- 4.1.1 Pod结构
- 4.1.2 Pod定义
- 4.2 Pod配置
- 4.2.1 基本配置
- 4.2.2 镜像拉取
- 4.2.3 启动命令
- 4.2.4 环境变量
- 4.2.5 端口设置
- 4.2.6 资源配额
- 4.3 Pod生命周期
- 4.3.1 创建和终止
- 4.3.2 初始化容器
- 4.3.3 钩子函数
- 4.3.4 容器探测
- 4.3.5 重启策略
- 4.4 Pod调度
- 4.4.1 定向调度
- 4.4.2 亲和性调度
- 4.4.3 污点和容忍
4. Pod详解
4.1 Pod介绍
4.1.1 Pod结构
每个Pod中都可以包含一个或者多个容器,这些容器可以分为两类:
-
用户程序所在的容器,数量可多可少
-
Pause容器,这是每个Pod都会有的一个根容器,它的作用有两个:
- 可以以它为依据,评估整个Pod的健康状态
- 可以在根容器上设置Ip地址,其它容器都此Ip(Pod IP),以实现Pod内部的网路通信
这里是Pod内部的通讯,Pod的之间的通讯采用虚拟二层网络技术来实现,我们当前环境用的是Flannel
4.1.2 Pod定义
下面是Pod的资源清单:
apiVersion: v1 #必选,版本号,例如v1
kind: Pod #必选,资源类型,例如 Pod
metadata: #必选,元数据
name: string #必选,Pod名称
namespace: string #Pod所属的命名空间,默认为"default"
labels: #自定义标签列表
- name: string
spec: #必选,Pod中容器的详细定义
containers: #必选,Pod中容器列表
- name: string #必选,容器名称
image: string #必选,容器的镜像名称
imagePullPolicy: [ Always|Never|IfNotPresent ] #获取镜像的策略
command: [string] #容器的启动命令列表,如不指定,使用打包时使用的启动命令
args: [string] #容器的启动命令参数列表
workingDir: string #容器的工作目录
volumeMounts: #挂载到容器内部的存储卷配置
- name: string #引用pod定义的共享存储卷的名称,需用volumes[]部分定义的的卷名
mountPath: string #存储卷在容器内mount的绝对路径,应少于512字符
readOnly: boolean #是否为只读模式
ports: #需要暴露的端口库号列表
- name: string #端口的名称
containerPort: int #容器需要监听的端口号
hostPort: int #容器所在主机需要监听的端口号,默认与Container相同
protocol: string #端口协议,支持TCP和UDP,默认TCP
env: #容器运行前需设置的环境变量列表
- name: string #环境变量名称
value: string #环境变量的值
resources: #资源限制和请求的设置
limits: #资源限制的设置
cpu: string #Cpu的限制,单位为core数,将用于docker run --cpu-shares参数
memory: string #内存限制,单位可以为Mi/Gi,将用于docker run --memory参数
requests: #资源请求的设置
cpu: string #Cpu请求,容器启动的初始可用数量
memory: string #内存请求,容器启动的初始可用数量
lifecycle: #生命周期钩子
postStart: #容器启动后立即执行此钩子,如果执行失败,会根据重启策略进行重启
preStop: #容器终止前执行此钩子,无论结果如何,容器都会终止
livenessProbe: #对Pod内各容器健康检查的设置,当探测无响应几次后将自动重启该容器
exec: #对Pod容器内检查方式设置为exec方式
command: [string] #exec方式需要制定的命令或脚本
httpGet: #对Pod内个容器健康检查方法设置为HttpGet,需要制定Path、port
path: string
port: number
host: string
scheme: string
HttpHeaders:
- name: string
value: string
tcpSocket: #对Pod内个容器健康检查方式设置为tcpSocket方式
port: number
initialDelaySeconds: 0 #容器启动完成后首次探测的时间,单位为秒
timeoutSeconds: 0 #对容器健康检查探测等待响应的超时时间,单位秒,默认1秒
periodSeconds: 0 #对容器监控检查的定期探测时间设置,单位秒,默认10秒一次
successThreshold: 0 #对容器监控检查的定期成功多少次,认为是成功的
failureThreshold: 0 #对容器监控检查的定期失败多少次,认为是失败的
securityContext: # 安全上下文
privileged: false
restartPolicy: [Always | Never | OnFailure] #Pod的重启策略
nodeName: <string> #设置NodeName表示将该Pod调度到指定到名称的node节点上
nodeSelector: obeject #设置NodeSelector表示将该Pod调度到包含这个label的node上
imagePullSecrets: #Pull镜像时使用的secret名称,以key:secretkey格式指定
- name: string
hostNetwork: false #是否使用主机网络模式,默认为false,如果设置为true,表示使用宿主机网络
volumes: #在该pod上定义共享存储卷列表
- name: string #共享存储卷名称 (volumes类型有很多种)
emptyDir: {} #类型为emtyDir的存储卷,与Pod同生命周期的一个临时目录。为空值
hostPath: string #类型为hostPath的存储卷,表示挂载Pod所在宿主机的目录
path: string #Pod所在宿主机的目录,将被用于同期中mount的目录
secret: #类型为secret的存储卷,挂载集群与定义的secret对象到容器内部
scretname: string
items:
- key: string
path: string
configMap: #类型为configMap的存储卷,挂载预定义的configMap对象到容器内部
name: string
items:
- key: string
path: string
#小提示:
# 在这里,可通过一个命令来查看每种资源的可配置项
# kubectl explain 资源类型 查看某种资源可以配置的一级属性
# kubectl explain 资源类型.属性 查看属性的子属性
[root@k8s-master ~]# kubectl explain pod
KIND: Pod
VERSION: v1
FIELDS:
apiVersion <string>
kind <string>
metadata <Object>
spec <Object>
status <Object>
[root@k8s-master ~]# kubectl explain pod.metadata
KIND: Pod
VERSION: v1
RESOURCE: metadata <Object>
FIELDS:
annotations <map[string]string>
clusterName <string>
creationTimestamp <string>
deletionGracePeriodSeconds <integer>
deletionTimestamp <string>
finalizers <[]string>
generateName <string>
generation <integer>
labels <map[string]string>
managedFields <[]Object>
name <string>
namespace <string>
ownerReferences <[]Object>
resourceVersion <string>
selfLink <string>
uid <string>
在kubernetes中基本所有资源的一级属性都是一样的,主要包含5部分:
-
apiVersion 版本,由kubernetes内部定义,版本号必须可以用 kubectl api-versions 查询到
-
kind 类型,由kubernetes内部定义,版本号必须可以用 kubectl api-resources 查询到
-
metadata 元数据,主要是资源标识和说明,常用的有name 、namespace 、 labels 等
-
spec 描述 ,这是配置中最重要的一部分,里面是对各种资源配置的详细描述
-
status 状态 信息, 里面的内容不需要定义,有kubernetes 自动生成
在上面的属性中, spec 是接下来研究的重点,继续看下它常见的子属性:
- containers <[]Object> 容器列表,用于定义容器的详细信息
- nodeName 根据nodeName的值将pod调度到指定的Node节点上
- nodeSelector 根据NodeSelector中定义的信息选择将该Pod调度到包含这些label的Node 上
- hostNetwork 是否使用主机网络模式,默认为false,如果设置为true,表示使用宿主机网络
- volumes <[]Object> 存储卷,用于定义Pod上面挂在的存储信息
- restartPolicy 重启策略,表示Pod在遇到故障的时候的处理策略
4.2 Pod配置
本小节主要来研究pod.spec.containers
属性,这也是pod配置中最为关键的一项配置。
[root@k8s-master ~]# kubectl explain pod.spec.containers
KIND: Pod
VERSION: v1
RESOURCE: containers <[]Object> # 数组,代表可以有多个容器
FIELDS:
name <string> # 容器名称
image <string> # 容器需要的镜像地址
imagePullPolicy <string> # 镜像拉取策略
command <[]string> # 容器的启动命令列表,如不指定,使用打包时使用的启动命令
args <[]string> # 容器的启动命令需要的参数列表
env <[]Object> # 容器环境变量的配置
ports <[]Object> # 容器需要暴露的端口号列表
resources <Object> # 资源限制和资源请求的设置
4.2.1 基本配置
创建pod-base.yaml文件,内容如下:
apiVersion: v1
kind: Pod
metadata:
labels:
run: agan // 标签
name: pod-base // Pod名字
namespace: dev // 运行在那个名称空间
spec:
containers:
- image: nginx:latest // 使用那个镜像
imagePullPolicy: IfNotPresent // 拉去镜像策略
name: pod-nginx-container // 命名容器名字
- image: busybox:latest
name: pod-busybox-container
[root@k8s-master manifest]# pwd
/root/manifest
[root@k8s-master manifest]# kubectl apply -f pod-base.yaml
pod/pod-base created
[root@k8s-master manifest]# kubectl get -f pod-base.yaml
NAME READY STATUS RESTARTS AGE
pod-base 1/2 CrashLoopBackOff 1 (22s ago) 54s
[root@k8s-master manifest]#
上面定义了一个比较简单Pod的配置,里面有两个容器:
- nginx:用最新版本的nginx镜像创建,(nginx是一个轻量级web容器)
- busybox:用最新版本的busybox镜像创建,(busybox是一个小巧的linux命令集合)
# 创建Pod
[root@k8s-master manifest]# kubectl apply -f pod-base.yaml
pod/pod-base created
[root@k8s-master manifest]#
# 查看Pod状况
# READY 1/2 : 表示当前Pod中有2个容器,其中1个准备就绪,1个未就绪
# RESTARTS : 重启次数,因为有1个容器故障了,Pod一直在重启试图恢复它
[root@k8s-master manifest]# kubectl get pod -n dev
NAME READY STATUS RESTARTS AGE
pod-base 1/2 CrashLoopBackOff 5 (76s ago) 5m12s
[root@k8s-master manifest]#
# 可以通过describe查看内部的详情
# 此时已经运行起来了一个基本的Pod,虽然它暂时有问题
[root@k8s-master manifest]# kubectl describe -f pod-base.yaml
......省略以上内容
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 6m20s default-scheduler Successfully assigned dev/pod-base to k8s-node2
Normal Pulled 6m20s kubelet Container image "nginx:latest" already present on machine
Normal Created 6m20s kubelet Created container pod-nginx-container
Normal Started 6m20s kubelet Started container pod-nginx-container
Normal Pulled 5m53s kubelet Successfully pulled image "busybox:latest" in 26.883s (26.884s including waiting)
Normal Pulled 5m49s kubelet Successfully pulled image "busybox:latest" in 4.132s (4.132s including waiting)
Normal Pulled 5m26s kubelet Successfully pulled image "busybox:latest" in 8.984s (8.984s including waiting)
Normal Pulling 5m (x4 over 6m20s) kubelet Pulling image "busybox:latest"
Normal Created 4m54s (x4 over 5m53s) kubelet Created container pod-busybox-container
Normal Started 4m54s (x4 over 5m53s) kubelet Started container pod-busybox-container
Normal Pulled 4m54s kubelet Successfully pulled image "busybox:latest" in 5.892s (5.892s including waiting)
Warning BackOff 67s (x21 over 5m48s) kubelet Back-off restarting failed container pod-busybox-container in pod pod-base_dev(978edcc4-a33e-4909-aebc-1f41299dce2a)
[root@k8s-master manifest]#
4.2.2 镜像拉取
创建pod-imagepullpolicy.yaml文件,内容如下:
apiVersion: v1
kind: Pod
metadata:
labels:
run: agan
name: pod-imagepullpolicy
namespace: dev
spec:
containers:
- image: nginx:1.24.0
name: nginx
imagePullPolicy: Never # 用于设置镜像拉取策略
- image: busybox:1.30
name: busybox
imagePullPolicy,用于设置镜像拉取策略,kubernetes支持配置三种拉取策略:
- Always:总是从远程仓库拉取镜像(一直远程下载)
- IfNotPresent:本地有则使用本地镜像,本地没有则从远程仓库拉取镜像(本地有就用本地 本地没远程下载)
- Never:只使用本地镜像,从不去远程仓库拉取,本地没有就报错 (一直使用本地)
默认值说明:
如果镜像tag为具体版本号, 默认策略是:IfNotPresent
如果镜像tag为:latest(最终版本) ,默认策略是always
# 创建Pod
[root@k8s-master manifest]# kubectl apply -f pod-imagePullPolicy.yaml
pod/pod-imagepullpolicy created
[root@k8s-master manifest]# kubectl get -f pod-imagePullPolicy.yaml
NAME READY STATUS RESTARTS AGE
pod-imagepullpolicy 1/2 NotReady 1 (9s ago) 10s
# 查看Pod详情
# 此时明显可以看到busybox镜像有一步Pulling image "busybox:1.30"的过程
[root@k8s-master manifest]# kubectl describe -f pod-imagePullPolicy.yaml
......
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 7s default-scheduler Successfully assigned dev/pod-imagepullpolicy to k8s-node1
Normal Pulled 6s kubelet Container image "nginx:1.24.0" already present on machine
Normal Created 6s kubelet Created container nginx
Normal Started 6s kubelet Started container nginx
Normal Pulling 6s kubelet Pulling image "busybox:1.30"
4.2.3 启动命令
在前面的案例中,一直有一个问题没有解决,就是的busybox容器一直没有成功运行,那么到底是什么原因导致这个容器的故障呢?
原来busybox并不是一个程序,而是类似于一个工具类的集合,kubernetes集群启动管理后,它会自动关闭。解决方法就是让其一直在运行,这就用到了command配置。
创建pod-command.yaml文件,内容如下:
apiVersion: v1
kind: Pod
metadata:
name: pod-command
namespace: dev
spec:
containers:
- name: nginx
image: nginx:1.17.1
- name: busybox
image: busybox:1.30
command: ["/bin/sh","-c","touch /tmp/hello.txt;while true;do /bin/echo $(date +%T) >> /tmp/hello.txt; sleep 3; done;"]
command,用于在pod中的容器初始化完毕之后运行一个命令。
稍微解释下上面命令的意思:
“/bin/sh”,“-c”, 使用sh执行命令
touch /tmp/hello.txt; 创建一个/tmp/hello.txt 文件
while true;do /bin/echo $(date +%T) >> /tmp/hello.txt; sleep 3; done; 每隔3秒向文件中写入当前时间
# 创建Pod
[root@k8s-master practice]# pwd
/root/inventory/practice
[root@k8s-master practice]# kubectl create -f pod-command.yaml
pod/pod-command created
[root@k8s-master manifest]# kubectl describe -f pod-command.yaml
......
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 50s default-scheduler Successfully assigned dev/pod-command to k8s-node2
Normal Pulling 50s kubelet Pulling image "nginx:1.24.0"
Normal Pulled 15s kubelet Successfully pulled image "nginx:1.24.0" in 34.589s (34.589s including waiting)
Normal Created 15s kubelet Created container pod-command-containers
Normal Started 15s kubelet Started container pod-command-containers
Normal Pulling 15s kubelet Pulling image "busybox:1.36.0"
Normal Pulled 2s kubelet Successfully pulled image "busybox:1.36.0" in 13.276s (13.276s including waiting)
Normal Created 2s kubelet Created container busybox
Normal Started 2s kubelet Started container busybox
# 查看Pod状态
# 此时发现两个pod都正常运行了
[root@k8s-master manifest]# kubectl get pod -n dev
NAME READY STATUS RESTARTS AGE
pod-base 1/2 CrashLoopBackOff 89 (4m48s ago) 43h
pod-command 2/2 Running 0 2m1s
pod-imagepullpolicy 1/2 CrashLoopBackOff 12 (2m2s ago) 38m
[root@k8s-master manifest]#
# 进入pod中的busybox容器,查看文件内容
# 补充一个命令: kubectl exec pod名称 -n 命名空间 -it -c 容器名称 -- /bin/sh 在容器内部执行命令
# 使用这个命令就可以进入某个容器的内部,然后进行相关操作了
# 比如,可以查看txt文件的内容
[root@k8s-master manifest]# kubectl exec pod-command -c busybox -itn dev -- /bin/sh
/ #
/ # tail -f /tmp/hello.txt
05:09:25
05:09:28
05:09:31
05:09:34
05:09:37
特别说明:
通过上面发现command已经可以完成启动命令和传递参数的功能,为什么这里还要提供一个args选项,用于传递参数呢?这其实跟docker有点关系,kubernetes中的command、args两项其实是实现覆盖Dockerfile中ENTRYPOINT的功能。
1 如果command和args均没有写,那么用Dockerfile的配置。
2 如果command写了,但args没有写,那么Dockerfile默认的配置会被忽略,执行输入的command
3 如果command没写,但args写了,那么Dockerfile中配置的ENTRYPOINT的命令会被执行,使用当前args的参数
4 如果command和args都写了,那么Dockerfile的配置被忽略,执行command并追加上args参数
4.2.4 环境变量
创建pod-env.yaml文件,内容如下:
apiVersion: v1
kind: Pod
metadata:
name: pod-env
namespace: dev
spec:
containers:
- name: busybox
image: busybox:1.30
command: ["/bin/sh","-c","while true;do /bin/echo $(date +%T);sleep 60; done;"]
env: # 设置环境变量列表
- name: "username"
value: "admin"
- name: "password"
value: "123456"
env,环境变量,用于在pod中的容器设置环境变量。
# 创建Pod
[root@k8s-master manifest]# pwd
/root/manifest
[root@k8s-master manifest]# kubectl create -f pod-env.yaml
pod/pod-env created
[root@k8s-master manifest]# kubectl get pods -n dev
NAME READY STATUS RESTARTS AGE
pod-base 1/2 CrashLoopBackOff 28 (3m44s ago) 123m
pod-command 2/2 Running 0 33m
pod-env 1/1 Running 0 7s
pod-imagepullpolicy 0/2 CrashLoopBackOff 17 (4m41s ago) 66m
[root@k8s-master manifest]#
# 进入容器,输出环境变量
[root@k8s-master manifest]# kubectl exec pod-env -c busybox-env -itn dev -- /bin/sh
/ # echo $username
admin
/ #
/ # echo $password
123456
/ #
这种方式不是很推荐,推荐将这些配置单独存储在配置文件中,这种方式将在后面介绍。
4.2.5 端口设置
本小节来介绍容器的端口设置,也就是containers的ports选项。
首先看下ports支持的子选项:
[root@k8s-master ~]# kubectl explain pod.spec.containers.ports
KIND: Pod
VERSION: v1
RESOURCE: ports <[]Object>
DESCRIPTION:
...
FIELDS: # (有关键字-required- 必须写上去)
containerPort <integer> -required- # 容器要监听的端口(0<x<65536)。
...
hostIP <string> # 要将外部端口绑定到的主机IP(一般省略)
What host IP to bind the external port to.
hostPort <integer> # 容器要在主机上公开的端口,如果设置,主机上只能运行容器的一个副本(一般省略)
...
name <string> # 端口名称,如果指定,必须保证name在pod中是唯一的
...
protocol <string> # 端口协议。必须是UDP、TCP或SCTP。默认为“TCP”。
...
接下来,编写一个测试案例,创建pod-ports.yaml
apiVersion: v1
kind: Pod
metadata:
name: pod-ports
namespace: dev
spec:
containers:
- name: nginx-ports
image: nginx:1.24.0
ports: # 设置容器暴露的端口列表
- containerPort: 80
name: nginx-port
protocol: "TCP"
# 创建Pod
[root@k8s-master manifest]# kubectl apply -f pod-ports.yaml
pod/pod-ports created
[root@k8s-master manifest]#
# 查看pod
# 在下面可以明显看到配置信息
[root@k8s-master manifest]# kubectl get pod pod-ports -n dev -o yaml
apiVersion: v1
kind: Pod
metadata:
creationTimestamp: "2023-11-16T08:46:52Z"
name: pod-ports
namespace: dev
resourceVersion: "549742"
uid: 37eb2cff-d252-4476-bc8a-cc4332910e31
spec:
containers:
- image: nginx:1.24.0
imagePullPolicy: IfNotPresent
name: nginx1
ports:
- containerPort: 80
name: nginx-ports
protocol: TCP
...省略
访问容器中的程序需要使用的是Podip:containerPort
[root@k8s-master ~]# kubectl get pod pod-ports -n dev -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod-ports 1/1 Running 1 (41m ago) 41h 10.244.1.59 k8s-node1 <none> <none>
[root@k8s-master ~]# curl 10.244.1.59
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>
<p>For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.</p>
<p><em>Thank you for using nginx.</em></p>
</body>
</html>
[root@k8s-master ~]#
[root@k8s-master ~]# kubectl exec pod-ports -itn dev -c nginx1 -- /bin/sh
# find / -name *html 2> /dev/null
/usr/share/nginx/html
/usr/share/nginx/html/50x.html
/usr/share/nginx/html/index.html # nginx 网站的位置
# cat /usr/share/nginx/html/index.html
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>
<p>For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.</p>
<p><em>Thank you for using nginx.</em></p>
</body>
</html>
#
# echo '我是靓仔' > /usr/share/nginx/html/index.html
# cat /usr/share/nginx/html/index.html
我是靓仔
# exit # 退出
[root@k8s-master ~]# curl 10.244.1.59
我是靓仔
[root@k8s-master ~]#
4.2.6 资源配额
容器中的程序要运行,肯定是要占用一定资源的,比如cpu和内存等,如果不对某个容器的资源做限制,那么它就可能吃掉大量资源,导致其它容器无法运行。针对这种情况,kubernetes提供了对内存和cpu的资源进行配额的机制,这种机制主要通过resources选项实现,他有两个子选项:
- limits:用于限制运行时容器的最大占用资源,当容器占用资源超过limits时会被终止,并进行重启
- requests :用于设置容器需要的最小资源,如果环境资源不够,容器将无法启动
可以通过上面两个选项设置资源的上下限。
接下来,编写一个测试案例,创建pod-resources.yaml
apiVerion: v1
kind: Pod
metadata:
name: pod-resources
namespace: dev
spec:
containers:
- name: nginx
image: nginx:1.17.1
resources: # 资源配额
limits: # 限制资源(上限)
cpu: "2" # CPU限制,单位是core数
memory: "2Gi" # 内存限制
requests: # 请求资源(下限)
cpu: "1" # CPU限制,单位是core数
memory: "10Mi" # 内存限制
在这对cpu和memory的单位做一个说明:
- cpu:core数,可以为整数或小数
- memory: 内存大小,可以使用Gi、Mi、G、M等形式
# 运行Pod
[root@k8s-master manifest]# pwd
/root/manifest
[root@k8s-master manifest]# kubectl apply -f pod-resources.yaml
pod/pod-resources created
# 查看发现pod运行正常
[root@k8s-master manifest]# kubectl get pod pod-resources -n dev -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod-resources 1/1 Running 0 29s 10.244.1.61 k8s-node1 <none> <none>
[root@k8s-master manifest]#
# 接下来,停止Pod
[root@k8s-master practice]# kubectl delete -f pod-resources.yaml
pod "pod-resources" deleted
[root@k8s-master practice]#
# 编辑pod,修改resources.requests.memory的值为10Gi
[root@k8s-master01 ~]# vim pod-resources.yaml
apiVersion: v1
kind: Pod
metadata:
name: pod-resources
namespace: dev
spec:
containers:
- name: podresources-containers
image: nginx:1.24.0
resources:
limits:
cpu: "2"
memory: "4Gi"
requests:
cpu: "1"
memory: "3Gi" // 修改为3Gi
# 再次启动pod
[root@k8s-master manifest]# kubectl apply -f pod-resources.yaml
pod/pod-resources created
# 查看Pod状态,发现Pod启动失败
[root@k8s-master manifest]# kubectl get -f pod-resources.yaml
NAME READY STATUS RESTARTS AGE
pod-resources 0/1 Pending 0 6s
# 查看pod详情会发现,如下提示
[root@k8s-master manifest]# kubectl describe -f pod-resources.yaml
......
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Warning FailedScheduling 117s default-scheduler 0/3 nodes are available: 1 node(s) had untolerated taint {node-role.kubernetes.io/control-plane: }, 2 Insufficient memory. preemption: 0/3 nodes are available: 1 Preemption is not helpful for scheduling, 2 No preemption victims found for incoming pod..
# Insufficient memory.(内存不足)
# 因为本人的环境只有4G运行内存,超过了,母机的内存所有启动不了。
[root@k8s-node1 ~]# free -h
total used free shared buff/cache available
Mem: 1.8G 409M 817M 10M 592M 1.2G
Swap: 0B 0B 0B
[root@k8s-node1 ~]#
[root@k8s-master manifest]# pwd
/root/manifest
[root@k8s-master manifest]# cat pod-resources.yaml
apiVersion: v1
kind: Pod
metadata:
name: pod-resources
namespace: dev
spec:
containers:
- name: podresources-containers
image: nginx:1.24.0
resources:
limits:
cpu: "2"
memory: "4Gi"
requests:
cpu: "1"
memory: "1Gi" # 修改成 1Gi
[root@k8s-master manifest]# kubectl apply -f pod-resources.yaml
pod/pod-resources created
[root@k8s-master manifest]# kubectl get -f pod-resources.yaml
NAME READY STATUS RESTARTS AGE
pod-resources 1/1 Running 0 4s
[root@k8s-master manifest]#
4.3 Pod生命周期
我们一般将pod对象从创建至终的这段时间范围称为pod的生命周期,它主要包含下面的过程:
- pod创建过程
- 运行初始化容器(init container)过程
- 运行主容器(main container)
- 容器启动后钩子(post start)、容器终止前钩子(pre stop)
- 容器的存活性探测(liveness probe)、就绪性探测(readiness probe)
- pod终止过程
在整个生命周期中,Pod会出现5种状态(相位),分别如下:
- 挂起(Pending):apiserver已经创建了pod资源对象,但它尚未被调度完成或者仍处于下载镜像的过程中
- 运行中(Running):pod已经被调度至某节点,并且所有容器都已经被kubelet创建完成
- 成功(Succeeded):pod中的所有容器都已经成功终止并且不会被重启
- 失败(Failed):所有容器都已经终止,但至少有一个容器终止失败,即容器返回了非0值的退出状态
- 未知(Unknown):apiserver无法正常获取到pod对象的状态信息,通常由网络通信失败所导致
4.3.1 创建和终止
pod的创建过程
- 用户通过kubectl或其他api客户端提交需要创建的pod信息给apiServer
- apiServer开始生成pod对象的信息,并将信息存入etcd,然后返回确认信息至客户端
- apiServer开始反映etcd中的pod对象的变化,其它组件使用watch机制来跟踪检查apiServer上的变动
- scheduler发现有新的pod对象要创建,开始为Pod分配主机并将结果信息更新至apiServer
- node节点上的kubelet发现有pod调度过来,尝试调用docker启动容器,并将结果回送至apiServer
- apiServer将接收到的pod状态信息存入etcd中
pod的终止过程
- 用户向apiServer发送删除pod对象的命令
- apiServcer中的pod对象信息会随着时间的推移而更新,在宽限期内(默认30s),pod被视为dead
- 将pod标记为terminating状态
- kubelet在监控到pod对象转为terminating状态的同时启动pod关闭过程
- 端点控制器监控到pod对象的关闭行为时将其从所有匹配到此端点的service资源的端点列表中移除
- 如果当前pod对象定义了preStop钩子处理器,则在其标记为terminating后即会以同步的方式启动执行
- pod对象中的容器进程收到停止信号
- 宽限期结束后,若pod中还存在仍在运行的进程,那么pod对象会收到立即终止的信号
- kubelet请求apiServer将此pod资源的宽限期设置为0从而完成删除操作,此时pod对于用户已不可见
4.3.2 初始化容器
初始化容器是在pod的主容器启动之前要运行的容器,主要是做一些主容器的前置工作,它具有两大特征:
- 初始化容器必须运行完成直至结束,若某初始化容器运行失败,那么kubernetes需要重启它直到成功完成
- 初始化容器必须按照定义的顺序执行,当且仅当前一个成功之后,后面的一个才能运行
初始化容器有很多的应用场景,下面列出的是最常见的几个:
- 提供主容器镜像中不具备的工具程序或自定义代码
- 初始化容器要先于应用容器串行启动并运行完成,因此可用于延后应用容器的启动直至其依赖的条件得到满足
接下来做一个案例,模拟下面这个需求:
假设要以主容器来运行nginx,但是要求在运行nginx之前先要能够连接上mysql和redis所在服务器
为了简化测试,事先规定好mysql(192.168.192.10)
和redis(192.168.192.11)
服务器的地址
创建pod-initcontainer.yaml,内容如下:
apiVersion: v1
kind: Pod
metadata:
name: pod-initcontainer
namespace: dev
spec:
containers:
- name: pod-initcontainer-containers
image: nginx:1.24.0
initContainers:
- name: test-mysql
image: busybox:1.30
command: ['sh','-c','until ping 10.10.10.155 -c 1 ; do echo waiting for mysql...; sleep 2; done;']
- name: test-redis
image: busybox:1.30
command: ['sh','-c','until ping 10.10.10.156 -c 1 ; do echo waiting for mysql...; sleep 2; done;']
# 创建pod
[root@k8s-master manifest]# kubectl apply -f pod-initcontainer.yaml
pod/pod-initcontainer created
[root@k8s-master manifest]# kubectl get -f pod-initcontainer.yaml -w
NAME READY STATUS RESTARTS AGE
pod-initcontainer 0/1 Init:0/2 0 8s
pod-initcontainer 0/1 Init:0/2 0 12s
# 查看pod状态
# 发现pod卡在启动第一个初始化容器过程中,后面的容器不会运行
[root@k8s-master ~]# kubectl describe -f manifest/pod-initcontainer.yaml
........
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 4m1s default-scheduler Successfully assigned dev/pod-initcontainer to k8s-node2
Normal Pulling 4m11s kubelet Pulling image "busybox:1.30"
Normal Pulled 4m1s kubelet Successfully pulled image "busybox:1.30" in 10.688s (10.688s including waiting)
Normal Created 4m1s kubelet Created container test-mysql
Normal Started 4m kubelet Started container test-mysql
# 动态查看pod
[root@k8s-master manifest]# kubectl get -f pod-initcontainer.yaml -w
NAME READY STATUS RESTARTS AGE
pod-initcontainer 0/1 Init:0/2 0 8s
pod-initcontainer 0/1 Init:0/2 0 12s
# 添加
[root@k8s-master ~]# ip addr show ens32
2: ens32: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
link/ether 00:0c:29:06:a1:28 brd ff:ff:ff:ff:ff:ff
inet 10.10.10.148/24 brd 10.10.10.255 scope global noprefixroute ens32
valid_lft forever preferred_lft forever
inet6 fe80::20c:29ff:fe06:a128/64 scope link
valid_lft forever preferred_lft forever
[root@k8s-master ~]# ip addr add 10.10.10.155/24 dev ens32
[root@k8s-master ~]# ip addr show ens32
2: ens32: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
link/ether 00:0c:29:06:a1:28 brd ff:ff:ff:ff:ff:ff
inet 10.10.10.148/24 brd 10.10.10.255 scope global noprefixroute ens32
valid_lft forever preferred_lft forever
inet 10.10.10.155/24 scope global secondary ens32
valid_lft forever preferred_lft forever
inet6 fe80::20c:29ff:fe06:a128/64 scope link
valid_lft forever preferred_lft forever
[root@k8s-master ~]#
# 这时查看,看到有一个容器(test-mysql)已经初始化成功
[root@k8s-master manifest]# kubectl get -f pod-initcontainer.yaml -w
NAME READY STATUS RESTARTS AGE
pod-initcontainer 0/1 Init:0/2 0 8s
pod-initcontainer 0/1 Init:0/2 0 12s
pod-initcontainer 0/1 Init:1/2 0 6m39s
pod-initcontainer 0/1 Init:1/2 0 6m40s
# 查看创建状态
[root@k8s-master ~]# kubectl describe -f manifest/pod-initcontainer.yaml
......
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 7m24s default-scheduler Successfully assigned dev/pod-initcontainer to k8s-node2
Normal Pulling 7m33s kubelet Pulling image "busybox:1.30"
Normal Pulled 7m23s kubelet Successfully pulled image "busybox:1.30" in 10.688s (10.688s including waiting)
Normal Created 7m23s kubelet Created container test-mysql
Normal Started 7m22s kubelet Started container test-mysql
Normal Pulled 56s kubelet Container image "busybox:1.30" already present on machine
Normal Created 56s kubelet Created container test-redis
Normal Started 55s kubelet Started container test-redis
[root@k8s-master ~]#
# Normal Scheduled 9m39s default-scheduler为k8s-node2成功分配dev/pod-initcontainer
# kubelet容器映像“busybox:1.30”已经存在于机器上
# kubelet创建容器test-mysql
# 正常启动9m38s kubelet启动容器test-mysql
# kubelet容器映像“busybox:1.30”已经存在于机器上
[root@k8s-master ~]# ip addr show ens32
2: ens32: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
link/ether 00:0c:29:06:a1:28 brd ff:ff:ff:ff:ff:ff
inet 10.10.10.148/24 brd 10.10.10.255 scope global noprefixroute ens32
valid_lft forever preferred_lft forever
inet 10.10.10.155/24 scope global secondary ens32
valid_lft forever preferred_lft forever
inet6 fe80::20c:29ff:fe06:a128/64 scope link
valid_lft forever preferred_lft forever
[root@k8s-master ~]# ip addr add 10.10.10.156/24 dev ens32
[root@k8s-master ~]#
[root@k8s-master ~]# ip addr show ens32
2: ens32: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
link/ether 00:0c:29:06:a1:28 brd ff:ff:ff:ff:ff:ff
inet 10.10.10.148/24 brd 10.10.10.255 scope global noprefixroute ens32
valid_lft forever preferred_lft forever
inet 10.10.10.155/24 scope global secondary ens32
valid_lft forever preferred_lft forever
inet 10.10.10.156/24 scope global secondary ens32
valid_lft forever preferred_lft forever
inet6 fe80::20c:29ff:fe06:a128/64 scope link
valid_lft forever preferred_lft forever
[root@k8s-master ~]#
[root@k8s-master manifest]# kubectl get -f pod-initcontainer.yaml -w
NAME READY STATUS RESTARTS AGE
pod-initcontainer 0/1 Init:0/2 0 8s
pod-initcontainer 0/1 Init:0/2 0 12s
pod-initcontainer 0/1 Init:1/2 0 6m39s
pod-initcontainer 0/1 Init:1/2 0 6m40s
pod-initcontainer 0/1 PodInitializing 0 9m42s
pod-initcontainer 1/1 Running 0 9m43s
# 初始化容器好才能启动nginx-initcontainer
[root@k8s-master ~]# kubectl describe -f manifest/pod-initcontainer.yaml
......
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 10m default-scheduler Successfully assigned dev/pod-initcontainer to k8s-node2
Normal Pulling 10m kubelet Pulling image "busybox:1.30"
Normal Pulled 10m kubelet Successfully pulled image "busybox:1.30" in 10.688s (10.688s including waiting)
Normal Created 10m kubelet Created container test-mysql
Normal Started 10m kubelet Started container test-mysql
Normal Pulled 3m57s kubelet Container image "busybox:1.30" already present on machine
Normal Created 3m57s kubelet Created container test-redis
Normal Started 3m56s kubelet Started container test-redis
Normal Pulled 53s kubelet Container image "nginx:1.24.0" already present on machine
Normal Created 53s kubelet Created container pod-initcontainer-containers
Normal Started 53s kubelet Started container pod-initcontainer-containers
4.3.3 钩子函数
钩子函数能够感知自身生命周期中的事件,并在相应的时刻到来时运行用户指定的程序代码。
kubernetes在主容器的启动之后和停止之前提供了两个钩子函数:
- post start:容器创建之后执行,如果失败了会重启容器
- pre stop :容器终止之前执行,执行完成之后容器将成功终止,在其完成之前会阻塞删除容器的操作
钩子处理器支持使用下面三种方式定义动作:
-
Exec命令:在容器内执行一次命令
…… lifecycle: postStart: exec: command: - cat - /tmp/healthy ……
-
TCPSocket:在当前容器尝试访问指定的socket
…… lifecycle: postStart: tcpSocket: port: 8080 ……
-
HTTPGet:在当前容器中向某url发起http请求
…… lifecycle: postStart: httpGet: path: / #URI地址 port: 80 #端口号 host: 192.168.5.3 #主机地址 scheme: HTTP #支持的协议,http或者https ……
接下来,以exec方式为例,演示下钩子函数的使用,创建pod-hook-exec.yaml文件,内容如下:
apiVersion: v1
kind: Pod
metadata:
name: pod-hook-exec
namespace: dev
spec:
containers:
- name: nginx-containers
image: nginx:1.25.1
imagePullPolicy: IfNotPresent
lifecycle:
postStart:
exec: # 在容器启动的时候执行一个命令,修改掉nginx的默认首页内容
command: ["/bin/sh","-c","echo 我是靓仔 > /usr/share/nginx/html/index.html"]
preStop:
exec: # 在容器停止之前停止nginx服务
command: ["/usr/sbin/nginx/","-s","quit"]
# 创建pod
[root@k8s-master manifest]# kubectl apply -f pod-hook-exec.yaml
pod/pod-hook-exec created
# 查看pod
[root@k8s-master manifest]# kubectl get -f pod-hook-exec.yaml -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod-hook-exec 1/1 Running 0 12s 10.244.2.41 k8s-node2 <none> <none>
# 访问pod
[root@k8s-master manifest]# curl 10.244.2.41
我是靓仔
[root@k8s-master manifest]#
4.3.4 容器探测
容器探测用于检测容器中的应用实例是否正常工作,是保障业务可用性的一种传统机制。如果经过探测,实例的状态不符合预期,那么kubernetes就会把该问题实例" 摘除 ",不承担业务流量。kubernetes提供了两种探针来实现容器探测,分别是:
- liveness probes:存活性探针,用于检测应用实例当前是否处于正常运行状态,如果不是,k8s会重启容器
- readiness probes:就绪性探针,用于检测应用实例当前是否可以接收请求,如果不能,k8s不会转发流量
livenessProbe 决定是否重启容器,readinessProbe 决定是否将请求转发给容器。
上面两种探针目前均支持三种探测方式:
-
Exec命令:在容器内执行一次命令,如果命令执行的退出码为0,则认为程序正常,否则不正常
…… livenessProbe: exec: command: - cat - /tmp/healthy ……
-
TCPSocket:将会尝试访问一个用户容器的端口,如果能够建立这条连接,则认为程序正常,否则不正常
…… livenessProbe: tcpSocket: port: 8080 ……
-
HTTPGet:调用容器内Web应用的URL,如果返回的状态码在200和399之间,则认为程序正常,否则不正常
…… livenessProbe: httpGet: path: / #URI地址 port: 80 #端口号 host: 127.0.0.1 #主机地址 scheme: HTTP #支持的协议,http或者https ……
下面以liveness probes为例,做几个演示:
方式一:Exec
创建pod-liveness-exec.yaml
apiVersion: v1
kind: Pod
metadata:
name: pod-liveness-exec
namespace: dev
spec:
containers:
- name: liveness-exec-container
image: nginx:1.24.0
livenessProbe:
exec:
command: ['/bin/cat','/tmp/Agan.txt'] # 执行一个查看文件的命令
创建pod,观察效果
# 创建Pod
[root@k8s-master manifest]# kubectl apply -f pod-liveness-exec.yaml
pod/pod-liveness-exec created
# 查看Pod详情
[root@k8s-master practice]# kubectl describe pod pod-liveness-exec -n dev
......
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 21s default-scheduler Successfully assigned dev/pod-liveness-exec to k8s-node2
Normal Pulled 31s kubelet Container image "nginx:1.24.0" already present on machine
Normal Created 31s kubelet Created container liveness-exec-container
Normal Started 31s kubelet Started container liveness-exec-container
Warning Unhealthy 11s (x2 over 21s) kubelet Liveness probe failed: /bin/cat: /tmp/Agan.txt: No such file or directory
#将dev/pod- activity -exec成功分配给k8s-node2
#kubelet容器映像“nginx:1.24.0”已经存在于机器上
#kubelet创建容器nginx- activity -exec-containers
#正常启动15秒(x3超过75秒)kubelet启动容器nginx- activity -exe -containers
#正常杀戮15秒(x2超过45秒)kubelet容器nginx-活体-执行-容器活体探测失败,将重新启动
#警告不健康5s (x7超过65s) kubelet live探测失败:/usr/bin/cat: /tmp/ again .txt:没有这样的文件或目录
# 目录:/tmp 下没有Agan.txt 这个文件
[root@k8s-master ~]# kubectl exec pod-liveness-exec -itn dev -c liveness-exec-container -- /bin/sh
# ls /tmp
# exit
# 观察上面的信息就会发现nginx容器启动之后就进行了健康检查
# 检查失败之后,容器被kill掉,然后尝试进行重启(这是重启策略的作用,后面讲解)
# 稍等一会之后,再观察pod信息,就可以看到 RESTARTS 不再是0,而是一直增长
[root@k8s-master manifest]# kubectl get -f pod-liveness-exec.yaml -w
NAME READY STATUS RESTARTS AGE
pod-liveness-exec 1/1 Running 0 5s
pod-liveness-exec 1/1 Running 1 (11s ago) 32s
pod-liveness-exec 1/1 Running 2 (10s ago) 61s
pod-liveness-exec 1/1 Running 3 (11s ago) 92s
pod-liveness-exec 1/1 Running 4 (11s ago) 2m2s
pod-liveness-exec 0/1 CrashLoopBackOff 4 (10s ago) 2m31s
# 当然接下来,可以创建文件:/tmp/Agan.txt,再试,结果就正常了......
[root@k8s-master ~]# kubectl exec pod-liveness-exec -itn dev -c liveness-exec-container -- /bin/sh
# touch /tmp/Agan.txt
#
# ls /tmp/
Agan.txt
#
# 文件:Agan.txt 存在之后 RESTARTS 就会正常了
[root@k8s-master manifest]# kubectl get -f pod-liveness-exec.yaml -w
NAME READY STATUS RESTARTS AGE
pod-liveness-exec 1/1 Running 0 5s
pod-liveness-exec 1/1 Running 1 (11s ago) 32s
pod-liveness-exec 1/1 Running 2 (10s ago) 61s
pod-liveness-exec 1/1 Running 3 (11s ago) 92s
pod-liveness-exec 1/1 Running 4 (11s ago) 2m2s
pod-liveness-exec 0/1 CrashLoopBackOff 4 (10s ago) 2m31s
pod-liveness-exec 1/1 Running 5 (53s ago) 3m14s
pod-liveness-exec 0/1 CrashLoopBackOff 5 (10s ago) 3m41s
pod-liveness-exec 1/1 Running 6 (96s ago) 5m7s
pod-liveness-exec 0/1 CrashLoopBackOff 6 (10s ago) 5m31s
pod-liveness-exec 1/1 Running 7 (2m54s ago) 8m15s
方式二:TCPSocket
创建pod-liveness-tcpsocket.yaml
apiVersion: v1
kind: Pod
metadata:
name: pod-liveness-tcpsocket
namespace: dev
spec:
containers:
- name: nginx-container
image: nginx:1.25.1
imagePullPolicy: IfNotPresent
ports:
- containerPort: 80
name: nginx-port
protocol: "TCP"
livenessProbe:
tcpSocket:
port: 8080 # 尝试访问8080端口
创建pod,观察效果
# 创建Pod
[root@k8s-master manifest]# kubectl apply -f pod-liveness-tcpsocket.yaml
pod/pod-liveness-tcpsocket created
[root@k8s-master manifest]# kubectl get -f pod-liveness-tcpsocket.yaml -w
NAME READY STATUS RESTARTS AGE
pod-liveness-tcpsocket 1/1 Running 0 5s
pod-liveness-tcpsocket 1/1 Running 1 (11s ago) 31s
pod-liveness-tcpsocket 1/1 Running 2 (11s ago) 61s
# 查看Pod详情
[root@k8s-master ~]# kubectl describe -f manifest/pod-liveness-tcpsocket.yaml
......
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 26m default-scheduler Successfully assigned dev/pod-liveness-tcpsocket to k8s-node2
Normal Created 25m (x4 over 26m) kubelet Created container liveness-socket-containers
Normal Started 25m (x4 over 26m) kubelet Started container liveness-socket-containers
Normal Killing 25m (x3 over 26m) kubelet Container liveness-socket-containers failed liveness probe, will be restarted
Warning Unhealthy 25m (x10 over 26m) kubelet Liveness probe failed: dial tcp 10.244.2.45:8080: connect: connection refused
Warning BackOff 6m55s (x70 over 24m) kubelet Back-off restarting failed container liveness-socket-containers in pod pod-liveness-tcpsocket_dev(f0f5be30-b888-4583-bddd-25addbaead14)
Normal Pulled 116s (x13 over 26m) kubelet Container image "nginx:1.24.0" already present on machine
# 观察上面的信息,发现尝试访问8080端口,但是失败了
# 稍等一会之后,再观察pod信息,就可以看到RESTARTS不再是0,而是一直增长
[root@k8s-master manifest]# kubectl get -f pod-liveness-tcpsocket.yaml -w
NAME READY STATUS RESTARTS AGE
pod-liveness-tcpsocket 1/1 Running 0 5s
pod-liveness-tcpsocket 1/1 Running 1 (11s ago) 31s
pod-liveness-tcpsocket 1/1 Running 2 (11s ago) 61s
pod-liveness-tcpsocket 1/1 Running 3 (11s ago) 91s
pod-liveness-tcpsocket 1/1 Running 4 (11s ago) 2m1s
pod-liveness-tcpsocket 0/1 CrashLoopBackOff 4 (11s ago) 2m31s
pod-liveness-tcpsocket 1/1 Running 5 (64s ago) 3m24s
pod-liveness-tcpsocket 1/1 Running 6 (11s ago) 3m51s
pod-liveness-tcpsocket 0/1 CrashLoopBackOff 6 (11s ago) 4m21s
pod-liveness-tcpsocket 1/1 Running 7 (3m4s ago) 7m14s
pod-liveness-tcpsocket 0/1 CrashLoopBackOff 7 (10s ago) 7m40s
pod-liveness-tcpsocket 1/1 Running 8 (5m20s ago) 12m
pod-liveness-tcpsocket 1/1 Running 9 (10s ago) 13m
pod-liveness-tcpsocket 0/1 CrashLoopBackOff 9 (11s ago) 13m
pod-liveness-tcpsocket 1/1 Running 10 (5m13s ago) 18m
pod-liveness-tcpsocket 1/1 Running 11 (11s ago) 19m
pod-liveness-tcpsocket 0/1 CrashLoopBackOff 11 (10s ago) 19m
pod-liveness-tcpsocket 1/1 Running 12 (5m22s ago) 25m
pod-liveness-tcpsocket 1/1 Running 13 (11s ago) 25m
# 当然接下来,可以修改成一个可以访问的端口,比如80,再试,结果就正常了......
方式三:HTTPGet
创建pod-liveness-httpget.yaml
apiVersion: v1
kind: Pod
metadata:
name: pod-liveness-httpget
namespace: dev
spec:
containers:
- name: nginx
image: nginx
ports:
- name: nginx-port
containerPort: 80
livenessProbe:
httpGet: # 其实就是访问http://127.0.0.1:80/hello
scheme: HTTP #支持的协议,http或者https
port: 80 #端口号
path: / #URI地址
创建pod,观察效果
# 创建Pod
[root@k8s-master manifest]# kubectl apply -f pod-liveness-httpget.yaml
pod/pod-liveness-httpget created
[root@k8s-master manifest]# kubectl get -f pod-liveness-httpget.yaml -w
NAME READY STATUS RESTARTS AGE
pod-liveness-httpget 1/1 Running 0 6s
# 查看Pod详情
[root@k8s-master ~]# kubectl describe -f manifest/pod-liveness-httpget.yaml
.......
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 29s default-scheduler Successfully assigned dev/pod-liveness-httpget to k8s-node2
Normal Pulling 39s kubelet Pulling image "nginx"
Normal Pulled 36s kubelet Successfully pulled image "nginx" in 2.408s (2.408s including waiting)
Normal Created 36s kubelet Created container liveness-httpget-containers
Normal Started 36s kubelet Started container liveness-httpget-containers
至此,已经使用liveness Probe演示了三种探测方式,但是查看livenessProbe的子属性,会发现除了这三种方式,还有一些其他的配置,在这里一并解释下:
[root@k8s-master ~]# kubectl explain pod.spec.containers.livenessProbe
FIELDS:
exec <Object>
tcpSocket <Object>
httpGet <Object>
initialDelaySeconds <integer> # 容器启动后等待多少秒执行第一次探测
timeoutSeconds <integer> # 探测超时时间。默认1秒,最小1秒
periodSeconds <integer> # 执行探测的频率。默认是10秒,最小1秒
failureThreshold <integer> # 连续探测失败多少次才被认定为失败。默认是3。最小值是1
successThreshold <integer> # 连续探测成功多少次才被认定为成功。默认是1
下面稍微配置两个,演示下效果即可:
[root@k8s-master ~]# more pod-liveness-httpget.yaml
apiVersion: v1
kind: Pod
metadata:
name: pod-liveness-httpget
namespace: dev
spec:
containers:
- name: nginx
image: nginx:1.24.0
ports:
- name: nginx-port
containerPort: 80
livenessProbe:
httpGet:
scheme: HTTP
port: 80
path: /
initialDelaySeconds: 30 # 容器启动后30s开始探测
timeoutSeconds: 5 # 探测超时时间为5s
4.3.5 重启策略
在上一节中,一旦容器探测出现了问题,kubernetes就会对容器所在的Pod进行重启,其实这是由pod的重启策略决定的,pod的重启策略有 3 种,分别如下:
- Always :容器失效时,自动重启该容器,这也是默认值。
- OnFailure : 容器终止运行且退出码不为0时重启
- Never : 不论状态为何,都不重启该容器
重启策略适用于pod对象中的所有容器,首次需要重启的容器,将在其需要时立即进行重启,随后再次需要重启的操作将由kubelet延迟一段时间后进行,且反复的重启操作的延迟时长以此为10s、20s、40s、80s、160s和300s,300s是最大延迟时长。
创建pod-restartpolicy.yaml:
apiVersion: v1
kind: Pod
metadata:
name: pod-restartpolicy
namespace: dev
spec:
containers:
- name: nginx
image: nginx:1.24.0
ports:
- name: nginx-port
containerPort: 80
livenessProbe:
httpGet:
scheme: HTTP
port: 80
path: /hello
restartPolicy: Never # 设置重启策略为Never
运行Pod测试
# 创建Pod
[root@k8s-master ~]# kubectl apply -f manifest/pod-restartpolicy.yaml
pod/pod-restartpolicy created
[root@k8s-master ~]#
# 查看Pod详情,发现nginx容器失败
[root@k8s-master ~]# kubectl describe -f manifest/pod-restartpolicy.yaml
......
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 34s default-scheduler Successfully assigned dev/pod-restartpolicy to k8s-node2
Normal Pulled 44s kubelet Container image "nginx:1.24.0" already present on machine
Normal Created 44s kubelet Created container nginx
Normal Started 44s kubelet Started container nginx
Warning Unhealthy 14s (x3 over 34s) kubelet Liveness probe failed: HTTP probe failed with statuscode: 404
Normal Killing 14s kubelet Stopping container nginx
[root@k8s-master ~]#
#Normal Scheduled 11s default-scheduler为k8s-node1成功分配dev/pod-restartpolicy
#kubelet容器镜像“nginx:1.25.1”已经存在于机器上
#正常创建10s kubelet创建容器nginx-restartpolicy-container
#正常启动10s kubelet启动容器nginx-restartpolicy-container
#kubelet live探测失败:HTTP探测失败,状态码:404
# 多等一会,再观察pod的重启次数,发现一直是0,并未重启
[root@k8s-master manifest]# kubectl get -f pod-restartpolicy.yaml -w
NAME READY STATUS RESTARTS AGE
pod-restartpolicy 1/1 Running 0 1s
pod-restartpolicy 0/1 Completed 0 32s
pod-restartpolicy 0/1 Completed 0 33s
pod-restartpolicy 0/1 Completed 0 34s
4.4 Pod调度
在默认情况下,一个Pod在哪个Node节点上运行,是由Scheduler组件采用相应的算法计算出来的,这个过程是不受人工控制的。但是在实际使用中,这并不满足的需求,因为很多情况下,我们想控制某些Pod到达某些节点上,那么应该怎么做呢?这就要求了解kubernetes对Pod的调度规则,kubernetes提供了四大类调度方式:
- 自动调度:运行在哪个节点上完全由Scheduler经过一系列的算法计算得出
- 定向调度:NodeName、NodeSelector
- 亲和性调度:NodeAffinity、PodAffinity、PodAntiAffinity
- 污点(容忍)调度:Taints、Toleration
4.4.1 定向调度
定向调度,指的是利用在pod上声明nodeName或者nodeSelector,以此将Pod调度到期望的node节点上。注意,这里的调度是强制的,这就意味着即使要调度的目标Node不存在,也会向上面进行调度,只不过pod运行失败而已。
NodeName
NodeName用于强制约束将Pod调度到指定的Name的Node节点上。这种方式,其实是直接跳过Scheduler的调度逻辑,直接将Pod调度到指定名称的节点。
kubectl explain pod.spec.nodeName
接下来,实验一下:创建一个pod-nodename.yaml文件
apiVersion: v1
kind: Pod
metadata:
name: pod-nodename
namespace: dev
spec:
containers:
- name: nginx-nodename-container
image: nginx:1.24.0
imagePullPolicy: IfNotPresent
ports:
- containerPort: 80
name: nginx-port
protocol: "TCP"
nodeName: k8s-node2 # 指定调度到k8s-node2节点上
#创建Pod
[root@k8s-master manifest]# kubectl apply -f pod-nodename.yaml
pod/pod-nodename created
#查看Pod调度到NODE属性,确实是调度到了 k8s-node1节点上
[root@k8s-master manifest]# kubectl get -f pod-nodename.yaml -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod-nodename 1/1 Running 0 3m51s 10.244.2.54 k8s-node2 <none> <none>
[root@k8s-master manifest]#
# 接下来,删除pod,修改nodeName的值为node3(并没有node3节点)
[root@k8s-master manifest]# kubectl delete -f pod-nodename.yaml
pod "pod-nodename" deleted
[root@k8s-master manifest]# vim pod-nodename.yaml
apiVersion: v1
kind: Pod
metadata:
name: pod-nodename
namespace: dev
spec:
containers:
- name: nginx-nodename-container
image: nginx:1.24.0
imagePullPolicy: IfNotPresent
ports:
- containerPort: 80
name: nginx-port
protocol: "TCP"
nodeName: k8s-node3 # 修改为: k8s-node3
[root@k8s-master manifest]# kubectl apply -f pod-nodename.yaml
pod/pod-nodename created
#再次查看,发现已经向k8s-node3节点调度,但是由于不存在 k8s-node3节点,所以pod无法正常运行
[root@k8s-master manifest]# kubectl get -f pod-nodename.yaml -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod-nodename 0/1 Pending 0 7s <none> k8s-node3 <none> <none>
[root@k8s-master manifest]#
NodeSelector
NodeSelector用于将pod调度到添加了指定标签的node节点上。它是通过kubernetes的label-selector机制实现的,也就是说,在pod创建之前,会由scheduler使用MatchNodeSelector调度策略进行label匹配,找出目标node,然后将pod调度到目标节点,该匹配规则是强制约束。
接下来,实验一下:
kubectl explain pod.spec.nodeSelector
1 首先分别为node节点添加标签
# 查看node节点标签
[root@k8s-master ~]# kubectl get nodes --show-labels
NAME STATUS ROLES AGE VERSION LABELS
k8s-master Ready control-plane 14d v1.28.2 beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=k8s-master,kubernetes.io/os=linux,node-role.kubernetes.io/control-plane=,node.kubernetes.io/exclude-from-external-load-balancers=
k8s-node1 Ready <none> 14d v1.28.2 beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=k8s-node1,kubernetes.io/os=linux
k8s-node2 Ready <none> 14d v1.28.2 beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=k8s-node2,kubernetes.io/os=linux
[root@k8s-master ~]#
# 打标签
[root@k8s-master ~]# kubectl label nodes k8s-node1 nodeenv=node1
node/k8s-node1 labeled
[root@k8s-master ~]#
[root@k8s-master ~]# kubectl label nodes k8s-node2 nodeenv=node2
node/k8s-node2 labeled
[root@k8s-master ~]#
[root@k8s-master ~]# kubectl get nodes --show-labels
NAME STATUS ROLES AGE VERSION LABELS
k8s-master Ready control-plane 14d v1.28.2 beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=k8s-master,kubernetes.io/os=linux,node-role.kubernetes.io/control-plane=,node.kubernetes.io/exclude-from-external-load-balancers=
k8s-node1 Ready <none> 14d v1.28.2 beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=k8s-node1,kubernetes.io/os=linux,nodeenv=node1
k8s-node2 Ready <none> 14d v1.28.2 beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=k8s-node2,kubernetes.io/os=linux,nodeenv=node2
[root@k8s-master ~]#
# i:表示不区分大小写,A6:表示从labels 向下匹配4行,B6:表示向上匹配6行。
[root@k8s-master manifest]# kubectl get nodes k8s-node1 -o yaml | grep -iA6 label
labels:
beta.kubernetes.io/arch: amd64
beta.kubernetes.io/os: linux
kubernetes.io/arch: amd64
kubernetes.io/hostname: k8s-node1
kubernetes.io/os: linux
nodeenv: node1
[root@k8s-master manifest]#
2 创建一个pod-nodeselector.yaml文件,并使用它创建Pod
apiVersion: v1
kind: Pod
metadata:
name: pod-nodeselector
namespace: dev
spec:
containers:
- name: nginx-nodeselector-container
image: nginx:1.25.1
ports:
- containerPort: 80
name: nginx-port
nodeSelector:
nodeenv: node2 # 指定调度到具有nodeenv=node2标签的节点上
#创建Pod
[root@k8s-master manifest]# kubectl apply -f pod-nodeselector.yaml
pod/pod-nodeselector created
#查看Pod调度到NODE属性,确实是调度到了 k8s-node2 节点上
[root@k8s-master manifest]# kubectl get -f pod-nodeselector.yaml -o wide -w
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod-nodeselector 0/1 ContainerCreating 0 11s <none> k8s-node2 <none> <none>
pod-nodeselector 1/1 Running 0 17s 10.244.2.55 k8s-node2 <none> <none>
# 接下来,删除pod,修改nodeSelector的值为nodeenv: Agan(不存在打有此标签的节点)
[root@k8s-master manifest]# kubectl delete -f pod-nodeselector.yaml
pod "pod-nodeselector" deleted
[root@k8s-master manifest]# vim pod-nodeselector.yaml
apiVersion: v1
kind: Pod
metadata:
name: pod-nodeselector
namespace: dev
spec:
containers:
- name: nginx-nodeselector-container
image: nginx:1.25.1
ports:
- containerPort: 80
name: nginx-port
nodeSelector:
nodeenv: Agan # 这个标签是不存在的
[root@k8s-master manifest]# kubectl create -f pod-nodeselector.yaml
pod/pod-nodeselector created
#再次查看,发现pod无法正常运行,Node的值为none
[root@k8s-master manifest]# kubectl get pod pod-nodeselector -n dev -o wide
NAME READY STATUS RESTARTS AGE IP NODE
pod-nodeselector 0/1 Pending 0 15s <none> <none>
# 查看详情,发现node selector匹配失败的提示
[root@k8s-master manifest]# kubectl describe -f pod-nodeselector.yaml
.......
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Warning FailedScheduling 53s default-scheduler 0/3 nodes are available: 1 node(s) had untolerated taint {node-role.kubernetes.io/control-plane: }, 2 node(s) didn't match Pod's node affinity/selector. preemption: 0/3 nodes are available: 3 Preemption is not helpful for scheduling..
[root@k8s-master manifest]#
4.4.2 亲和性调度
上一节,介绍了两种定向调度的方式,使用起来非常方便,但是也有一定的问题,那就是如果没有满足条件的Node,那么Pod将不会被运行,即使在集群中还有可用Node列表也不行,这就限制了它的使用场景。
基于上面的问题,kubernetes还提供了一种亲和性调度(Affinity)。它在NodeSelector的基础之上的进行了扩展,可以通过配置的形式,实现优先选择满足条件的Node进行调度,如果没有,也可以调度到不满足条件的节点上,使调度更加灵活。
Affinity主要分为三类:
- nodeAffinity(node亲和性): 以node为目标,解决pod可以调度到哪些node的问题
- podAffinity(pod亲和性) : 以pod为目标,解决pod可以和哪些已存在的pod部署在同一个拓扑域中的问题
- podAntiAffinity(pod反亲和性) : 以pod为目标,解决pod不能和哪些已存在pod部署在同一个拓扑域中的问题
关于亲和性(反亲和性)使用场景的说明:
亲和性:如果两个应用频繁交互,那就有必要利用亲和性让两个应用的尽可能的靠近,这样可以减少因网络通信而带来的性能损耗。
反亲和性:当应用的采用多副本部署时,有必要采用反亲和性让各个应用实例打散分布在各个node上,这样可以提高服务的高可用性。
NodeAffinity
首先来看一下NodeAffinity
的可配置项:
pod.spec.affinity.nodeAffinity
requiredDuringSchedulingIgnoredDuringExecution Node节点必须满足指定的所有规则才可以,相当于硬限制
nodeSelectorTerms 节点选择列表
matchFields 按节点字段列出的节点选择器要求列表
matchExpressions 按节点标签列出的节点选择器要求列表(推荐)
key 键
values 值
operator 关系符 支持Exists, DoesNotExist, In, NotIn, Gt, Lt
preferredDuringSchedulingIgnoredDuringExecution 优先调度到满足指定的规则的Node,相当于软限制 (倾向)
preference 一个节点选择器项,与相应的权重相关联
matchFields 按节点字段列出的节点选择器要求列表
matchExpressions 按节点标签列出的节点选择器要求列表(推荐)
key 键
values 值
operator 关系符 支持In, NotIn, Exists, DoesNotExist, Gt, Lt
weight 倾向权重,在范围1-100。
关系符的使用说明:
- matchExpressions:
- key: nodeenv # 匹配存在标签的key为nodeenv的节点
operator: Exists
- key: nodeenv # 匹配标签的key为nodeenv,且value是"xxx"或"yyy"的节点
operator: In
values: ["xxx","yyy"]
- key: nodeenv # 匹配标签的key为nodeenv,且value大于"xxx"的节点
operator: Gt
values: "数字"
接下来首先演示一下requiredDuringSchedulingIgnoredDuringExecution
,
创建 pod-nodeaffinity-required.yaml
apiVersion: v1
kind: Pod
metadata:
name: pod-nodeaffinity-required
namespace: dev
spec:
containers:
- name: nginx
image: nginx:1.25.1
affinity: #亲和性设置
nodeAffinity: #设置node亲和性
requiredDuringSchedulingIgnoredDuringExecution: # 硬限制
nodeSelectorTerms:
- matchExpressions: # 匹配env的值在["Agan","xxx"]中的标签
- key: nodeenv
operator: In
values: ["Agan","xxx"]
# 创建pod
[root@k8s-master manifest]# kubectl apply -f pod-nodeaffinity-required.yaml
pod/pod-nodeaffinity-required created
# 查看pod状态 (运行失败)
[root@k8s-master manifest]# kubectl get pod pod-nodeaffinity-required -n dev -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod-nodeaffinity-required 0/1 Pending 0 112s <none> <none> <none> <none>
# 查看Pod的详情
# 发现调度失败,提示节点与Pod的节点关联/选择器不匹配。
[root@k8s-master ~]# kubectl describe pod pod-nodeaffinity-required -n dev
......
Warning FailedScheduling 2m23s default-scheduler 0/3 nodes are available: 1 node(s) had untolerated taint {node-role.kubernetes.io/control-plane: }, 3 node(s) didn't match Pod's node affinity/selector. preemption: 0/3 nodes are available: 3 Preemption is not helpful for scheduling..
[root@k8s-master manifest]# kubectl get node k8s-node1 -o yaml
apiVersion: v1
kind: Node
metadata:
......
labels: # 查看没有 Agan 这个标签
beta.kubernetes.io/arch: amd64
beta.kubernetes.io/os: linux
kubernetes.io/arch: amd64
kubernetes.io/hostname: k8s-node1
kubernetes.io/os: linux
nodeenv: node1
name: k8s-node1
......
spec:
......
#接下来,停止pod
[root@k8s-master ~]# kubectl delete -f pod-nodeaffinity-required.yaml
pod "pod-nodeaffinity-required" deleted
# 修改文件,将values: ["Agan","xxx"]------> ["node1","xxx"]
[root@k8s-master manifest]# vim pod-nodeaffinity-required.yaml
apiVersion: v1
kind: Pod
metadata:
name: pod-nodeaffinity-required
namespace: dev
spec:
containers:
- name: nginx-nodeaffinity-required-container
image: nginx:1.25.1
ports:
- containerPort: 80
name: nginx-port
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: nodeenv
operator: In
values: ["node1","xxx"]
# 再次启动
[root@k8s-master manifest]# kubectl create -f pod-nodeaffinity-required.yaml
pod/pod-nodeaffinity-required created
# 此时查看,发现调度成功,已经将pod调度到了node1上
[root@k8s-master manifest]# kubectl get pod pod-nodeaffinity-required -n dev -o wide
NAME READY STATUS RESTARTS AGE IP NODE ......
pod-nodeaffinity-required 1/1 Running 0 98s 10.244.1.57 k8s-node1 ......
接下来再演示一下preferredDuringSchedulingIgnoredDuringExecution
,
创建pod-nodeaffinity-preferred.yaml
apiVersion: v1
kind: Pod
metadata:
name: pod-nodeaffinity-preferred
namespace: dev
spec:
containers:
- name: nginx
image: nginx:1.17.1
affinity: #亲和性设置
nodeAffinity: #设置node亲和性
preferredDuringSchedulingIgnoredDuringExecution: # 软限制
- weight: 1
preference:
matchExpressions: # 匹配nodeenv的值在["xxx","yyy"]中的标签(当前环境没有)
- key: nodeenv
operator: In
values: ["xxx","yyy"]
# 创建pod
[root@k8s-master manifest]# kubectl apply -f pod-nodeaffinity-preferred.yaml
pod/pod-nodeaffinity-preferred created
# 查看pod状态 (运行成功)# 软连接就算没有匹配的标签也会运行Pod,硬链接就不会运行。
[root@k8s-master manifest]# kubectl get -f pod-nodeaffinity-preferred.yaml -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod-nodeaffinity-preferred 1/1 Running 0 7s 10.244.2.56 k8s-node2 <none> <none>
[root@k8s-master manifest]#
NodeAffinity规则设置的注意事项:
1 如果同时定义了nodeSelector和nodeAffinity,那么必须两个条件都得到满足,Pod才能运行在指定的Node上
2 如果nodeAffinity指定了多个nodeSelectorTerms,那么只需要其中一个能够匹配成功即可
3 如果一个nodeSelectorTerms中有多个matchExpressions ,则一个节点必须满足所有的才能匹配成功
4 如果一个pod所在的Node在Pod运行期间其标签发生了改变,不再符合该Pod的节点亲和性需求,则系统将忽略此变化
PodAffinity
PodAffinity主要实现以运行的Pod为参照,实现让新创建的Pod跟参照pod在一个区域的功能。
首先来看一下PodAffinity
的可配置项:
pod.spec.affinity.podAffinity
requiredDuringSchedulingIgnoredDuringExecution 硬限制
namespaces 指定参照pod的namespace
topologyKey 指定调度作用域
labelSelector 标签选择器
matchExpressions 按节点标签列出的节点选择器要求列表(推荐)
key 键
values 值
operator 关系符 支持In, NotIn, Exists, DoesNotExist.
matchLabels 指多个matchExpressions映射的内容
preferredDuringSchedulingIgnoredDuringExecution 软限制
podAffinityTerm 选项
namespaces
topologyKey
labelSelector
matchExpressions
key 键
values 值
operator
matchLabels
weight 倾向权重,在范围1-100
topologyKey用于指定调度时作用域,例如:
如果指定为kubernetes.io/hostname,那就是以Node节点为区分范围
如果指定为beta.kubernetes.io/os,则以Node节点的操作系统类型来区分
接下来,演示下requiredDuringSchedulingIgnoredDuringExecution
,
1)首先创建一个参照Pod,pod-podaffinity-target.yaml:
apiVersion: v1
kind: Pod
metadata:
name: pod-podaffinity-target
namespace: dev
labels:
podenv: pod-node1 # 设置标签
spec:
containers:
- name: nginx
image: nginx:1.25.1
nodeName: k8s-node1 # 将目标pod名确指定到k8s-node1上
# 启动目标pod
[root@k8s-master manifest]# kubectl apply -f pod-podaffinity-target.yaml
pod/pod-podaffinity-target created
# 查看pod状况
[root@k8s-master manifest]# kubectl get -f pod-podaffinity-target.yaml
NAME READY STATUS RESTARTS AGE
pod-podaffinity-target 1/1 Running 0 4s
2)创建pod-podaffinity-required.yaml,内容如下:
apiVersion: v1
kind: Pod
metadata:
name: pod-podaffinity-required
namespace: dev
spec:
containers:
- name: nginx
image: nginx:1.25.1
affinity: #亲和性设置
podAffinity: #设置pod亲和性
requiredDuringSchedulingIgnoredDuringExecution: # 硬限制
- labelSelector:
matchExpressions: # 匹配env的值在["xxx","yyy"]中的标签
- key: nodeenv
operator: In
values: ["xxx","yyy"]
topologyKey: kubernetes.io/hostname
上面配置表达的意思是:新Pod必须要与拥有标签nodeenv=xxx或者nodeenv=yyy的pod在同一Node上,显然现在没有这样pod,接下来,运行测试一下。
# 启动pod
[root@k8s-master manifest]# kubectl apply -f pod-podaffinity-required.yaml
pod/pod-podaffinity-required created
# 查看pod状态,发现未运行
[root@k8s-master manifest]# kubectl get -f pod-podaffinity-required.yaml -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod-podaffinity-required 0/1 Pending 0 8s <none> <none> <none> <none>
[root@k8s-master manifest]#
# 查看详细信息
[root@k8s-master manifest]# kubectl describe -f pod-podaffinity-required.yaml
......
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Warning FailedScheduling 39s default-scheduler 0/3 nodes are available: 1 node(s) had untolerated taint {node-role.kubernetes.io/control-plane: }, 2 node(s) didn't match pod affinity rules. preemption: 0/3 nodes are available: 3 Preemption is not helpful for scheduling..
# 然后重新创建pod,查看效果
[root@k8s-master manifest]# kubectl delete -f pod-podaffinity-required.yaml
pod "pod-podaffinity-required" deleted
# 接下来修改 values: ["xxx","yyy"]----->values:["node1","yyy"]
# 意思是:新Pod必须要与拥有标签nodeenv=xxx或者nodeenv=yyy的pod在同一Node上
[root@k8s-master manifest]# vim pod-podaffinity-repuired.yaml
apiVersion: v1
kind: Pod
metadata:
name: pod-podaffinity-repuired
namespace: dev
spec:
containers:
- name: nginx-podaffinity-repuired
image: nginx:1.25.1
affinity:
podAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: podenv # 修改为podenv
operator: In
values: ["pod-node1","yyy"] # 修改xxx 为pod-node1
topologyKey: kubernetes.io/hostname
[root@k8s-master manifest]# kubectl apply -f pod-podaffinity-required.yaml
pod/pod-podaffinity-required created
# 发现此时Pod运行正常
[root@k8s-master manifest]# kubectl get -f pod-podaffinity-required.yaml -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod-podaffinity-required 1/1 Running 0 10s 10.244.1.65 k8s-node1 <none> <none>
[root@k8s-master manifest]#
关于PodAffinity
的 preferredDuringSchedulingIgnoredDuringExecution
,这里不再演示。
PodAntiAffinity
PodAntiAffinity主要实现以运行的Pod为参照,让新创建的Pod跟参照pod不在一个区域中的功能。
它的配置方式和选项跟PodAffinty是一样的,这里不再做详细解释,直接做一个测试案例。
1)继续使用上个案例中目标pod
[root@k8s-master manifest]# kubectl get pod -n dev --show-labels
NAME READY STATUS RESTARTS AGE LABELS
pod-podaffinity-required 1/1 Running 0 10m <none>
pod-podaffinity-target 1/1 Running 0 12m podenv=pod-node1
2)创建pod-podantiaffinity-required.yaml,内容如下:
apiVersion: v1
kind: Pod
metadata:
name: pod-podantiaffinity-required
namespace: dev
spec:
containers:
- name: nginx-containers
image: nginx:1.25.1
affinity: #亲和性设置
podAntiAffinity: #设置pod亲和性为:反亲和性
requiredDuringSchedulingIgnoredDuringExecution: # 硬限制
- labelSelector:
matchExpressions: # 匹配podenv的值在["pod-node1"]中的标签
- key: podenv
operator: In
values:
- pod-node1
topologyKey: kubernetes.io/hostname
上面配置表达的意思是:新Pod必须要与拥有标签nodeenv=node1的pod不在同一Node上,运行测试一下。
# 创建pod
[root@k8s-master manifest]# kubectl apply -f pod-podantiaffinity-required.yaml
pod/pod-podantiaffinity-required created
# 查看pod
# 发现调度到了node2上
[root@k8s-master manifest]# kubectl get -f pod-podantiaffinity-required.yaml -o wide
NAME READY STATUS RESTARTS AGE IP NODE ...
pod-podantiaffinity-required 1/1 Running 0 8s 10.244.2.57 k8s-node2 ...
[root@k8s-master manifest]#
[root@k8s-master ~]# kubectl get pod -n dev -o wide
NAME READY STATUS RESTARTS AGE IP NODE ...
pod-podaffinity-required 1/1 Running 0 20m 10.244.1.65 k8s-node1 ...
pod-podaffinity-target 1/1 Running 0 22m 10.244.1.64 k8s-node1 ...
pod-podantiaffinity-required 1/1 Running 0 3m31s 10.244.2.57 k8s-node2 ...
[root@k8s-master ~]#
4.4.3 污点和容忍
污点(Taints)
前面的调度方式都是站在Pod的角度上,通过在Pod上添加属性,来确定Pod是否要调度到指定的Node上,其实我们也可以站在Node的角度上,通过在Node上添加污点属性,来决定是否允许Pod调度过来。
Node被设置上污点之后就和Pod之间存在了一种相斥的关系,进而拒绝Pod调度进来,甚至可以将已经存在的Pod驱逐出去。
污点的格式为:key=value:effect
, key和value是污点的标签,effect描述污点的作用,支持如下三个选项:
- PreferNoSchedule:kubernetes将尽量避免把Pod调度到具有该污点的Node上,除非没有其他节点可调度
- NoSchedule:kubernetes将不会把Pod调度到具有该污点的Node上,但不会影响当前Node上已存在的Pod
- NoExecute:kubernetes将不会把Pod调度到具有该污点的Node上,同时也会将Node上已存在的Pod驱离
使用kubectl设置和去除污点的命令示例如下:
# 设置污点
kubectl taint nodes k8s-node1 key=value:effect
# 去除污点
kubectl taint nodes k8s-node1 key:effect-
# 去除所有污点
kubectl taint nodes k8s-node1 key-
接下来,演示下污点的效果:
- 准备节点k8s-node1(为了演示效果更加明显,暂时停止k8s-node2节点)
- 为k8s-node1节点设置一个污点:
tag=agan:PreferNoSchedule
;然后创建pod1( pod1 可以 ) - 修改为k8s-node1节点设置一个污点:
tag=agan:NoSchedule
;然后创建pod2( pod1 正常 pod2 失败 ) - 修改为k8s-node1节点设置一个污点:
tag=gan:NoExecute
;然后创建pod3 ( 3个pod都失败 )
# 为k8s-node1设置污点(PreferNoSchedule)
[root@k8s-master manifest]# kubectl taint node k8s-node1 tag=agan:PreferNoSchedule
node/k8s-node1 tainted
[root@k8s-master manifest]# kubectl get node k8s-node1 -o yaml | grep -iA3 taint
taints:
- effect: PreferNoSchedule
key: tag
value: agan
[root@k8s-master manifest]#
[root@k8s-master ~]# kubectl create namespace test # 创建的pod放在test名称空间
namespace/test created
[root@k8s-master ~]# kubectl get namespace test
NAME STATUS AGE
test Active 7s
[root@k8s-master ~]#
# 创建pod1
[root@k8s-master ~]# kubectl run taint01 --image=nginx:1.25.1 -n test
pod/taint01 created
[root@k8s-master ~]# kubectl get pod -n test -o wide # 因为没有可用的node节点,所以只能到k8s-node1节点上运行
NAME READY STATUS RESTARTS AGE IP NODE ...
taint01 1/1 Running 0 13s 10.244.1.66 k8s-node1 ...
[root@k8s-master ~]#
# 为k8s-node1设置污点(取消PreferNoSchedule,设置NoSchedule)
[root@k8s-master ~]# kubectl describe node k8s-node1 | grep -i taint
Taints: <none>
test taint01 0 (0%) 0 (0%) 0 (0%) 0 (0%) 6m20s
[root@k8s-master ~]# kubectl taint node k8s-node1 tag=agan:NoSchedule
node/k8s-node1 tainted
[root@k8s-master ~]#
[root@k8s-master ~]# kubectl describe node k8s-node1 | grep -i taint
Taints: tag=agan:NoSchedule
test taint01 0 (0%) 0 (0%) 0 (0%) 0 (0%) 8m1s
[root@k8s-master ~]#
# 创建pod2
[root@k8s-master ~]# kubectl run taint02 --image=nginx:1.25.1 -n test
pod/taint02 created
[root@k8s-master ~]#
[root@k8s-master ~]# kubectl get pod -n test -o wide
NAME READY STATUS RESTARTS AGE IP NODE ......
taint01 1/1 Running 0 9m14s 10.244.1.66 k8s-node1 ......
taint02 0/1 Pending 0 9s <none> <none> ...... # 状态为:Pending
[root@k8s-master ~]#
[root@k8s-master ~]# kubectl describe pod taint02 -n test
......
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Warning FailedScheduling 72s default-scheduler 0/3 nodes are available: 1 node(s) had untolerated taint {node-role.kubernetes.io/control-plane: }, 1 node(s) had untolerated taint {node.kubernetes.io/unreachable: }, 1 node(s) had untolerated taint {tag: agan}. preemption: 0/3 nodes are available: 3 Preemption is not helpful for scheduling..
[root@k8s-master ~]#
# 为node1设置污点(取消NoSchedule,设置NoExecute)
[root@k8s-master ~]# kubectl describe node k8s-node1 | grep -i taint
Taints: tag=agan:NoSchedule
test taint01 0 (0%) 0 (0%) 0 (0%) 0 (0%) 11m
[root@k8s-master ~]# kubectl taint node k8s-node1 tag=agan:NoSchedule-
node/k8s-node1 untainted
[root@k8s-master ~]#
[root@k8s-master ~]# kubectl describe node k8s-node1 | grep -i taint
Taints: <none>
test taint01 0 (0%) 0 (0%) 0 (0%) 0 (0%) 12m
test taint02 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3m10s
[root@k8s-master ~]#
[root@k8s-master ~]# kubectl taint node k8s-node1 tag=agan:NoExecute
node/k8s-node1 tainted
[root@k8s-master ~]#
# 创建pod3
[root@k8s-master ~]# kubectl run taint03 --image=nginx:1.25.1 -n test
pod/taint03 created
[root@k8s-master ~]#
[root@k8s-master ~]# kubectl get pod -n test -o wide
NAME READY STATUS RESTARTS AGE IP ......
taint03 0/1 Pending 0 13s <none> ......
[root@k8s-master ~]#
# 把之前的 taint01和taint02 都会驱除掉,taint03 也不会运行
[root@k8s-master ~]# kubectl run taint04 --image=nginx:1.25.1 -n test
pod/taint04 created
[root@k8s-master ~]#
[root@k8s-master ~]# kubectl get pod -n test -o wide
NAME READY STATUS RESTARTS AGE IP ......
taint03 0/1 Pending 0 46s <none> ......
taint04 0/1 Pending 0 3s <none> ......
[root@k8s-master ~]#
小提示:
使用kubeadm搭建的集群,默认就会给master节点添加一个污点标记,所以pod就不会调度到master节点上.
[root@k8s-master ~]# kubectl get node k8s-master -o yaml
apiVersion: v1
kind: Node
metadata:
......
labels:
......
spec:
podCIDR: 10.244.0.0/24
podCIDRs:
- 10.244.0.0/24
taints:
- effect: NoSchedule # master 节点污点的位置
key: node-role.kubernetes.io/control-plane
status:
....
容忍(Toleration)
上面介绍了污点的作用,我们可以在node上添加污点用于拒绝pod调度上来,但是如果就是想将一个pod调度到一个有污点的node上去,这时候应该怎么做呢?这就要使用到容忍。
污点就是拒绝,容忍就是忽略,Node通过污点拒绝pod调度上去,Pod通过容忍忽略拒绝
下面先通过一个案例看下效果:
- 上一小节,已经在node1节点上打上了
NoExecute
的污点,此时pod是调度不上去的 - 本小节,可以通过给pod添加容忍,然后将其调度上去
创建pod-toleration.yaml,内容如下
apiVersion: v1
kind: Pod
metadata:
name: pod-toleration
namespace: test
spec:
containers:
- name: pod-toleration-containers
image: nginx:1.25.1
tolerations: # 添加容忍
- key: "tag" # 要容忍的污点的key
operator: "Equal" # 操作符
value: "agan" # 容忍的污点的value
effect: "NoExecute" # 添加容忍的规则,这里必须和标记的污点规则相同
# 添加容忍之前的pod
[root@k8s-master ~]# kubectl get pod -n test -o wide
NAME READY STATUS RESTARTS AGE IP ......
taint03 0/1 Pending 0 46s <none> ......
taint04 0/1 Pending 0 3s <none> ......
[root@k8s-master ~]#
# 添加容忍之后的pod
[root@k8s-master ~]# kubectl apply -f pod-toleration.yaml
pod/pod-toleration created
[root@k8s-master ~]# kubectl get -f pod-toleration.yaml -o wide
NAME READY STATUS RESTARTS AGE IP NODE ......
pod-toleration 1/1 Running 0 7s 10.244.1.68 k8s-node1 ......
[root@k8s-master ~]#
下面看一下容忍的详细配置:
[root@k8s-master01 ~]# kubectl explain pod.spec.tolerations
......
FIELDS:
key # 对应着要容忍的污点的键,空意味着匹配所有的键
value # 对应着要容忍的污点的值
operator # key-value的运算符,支持Equal和Exists(默认)
effect # 对应污点的effect,空意味着匹配所有影响
tolerationSeconds # 容忍时间, 当effect为NoExecute时生效,表示pod在Node上的停留时间
...
taint03 0/1 Pending 0 46s <none> ......
taint04 0/1 Pending 0 3s <none> ......
[root@k8s-master ~]#