【GCN】GCN学习笔记一

news2024/10/7 20:26:39
  • 谱域图卷积
    • 卷积
      • 卷积定义
      • 离散空间的卷积
    • 图卷积简介
      • 卷积定理
      • 谱域图卷积实现思路
      • 如何定义图上的傅里叶变换
      • 拉普拉斯矩阵 (Laplacian Matrix)
      • 拉普拉斯矩阵的性质
      • 拉普拉斯矩阵的谱分解
      • 拉普拉斯矩阵与拉普拉斯算子
    • 图傅里叶变换
      • 图上的信号表示
      • 经典傅里叶变换
      • 特征向量基的性质
    • 总结
    • 三个经典图谱卷积模型
      • SCNN
      • ChebNet
      • GCN

谱域图卷积

卷积

卷积定义

卷积是分析数学中一种重要的运算,设 f ( x ) f(x) f(x) g ( x ) g(x) g(x) R \mathbb{R} R 上的可积函数,连续形式的卷积定义如下:

∫ − ∞ ∞ f ( τ ) g ( x − τ ) d τ (1) \int_{-\infin} ^{\infin} f(\tau) g(x - \tau) d\tau {\tag{1}} f(τ)g(xτ)dτ(1)

不同的函数和不同的卷积核可以的到不同的卷积结果。

离散空间的卷积

y n = x ∗ w = ∑ k = 1 k w k x n − k (2) y_n = x * w = \sum_{k=1}^k w_k x_{n-k} \tag{2} yn=xw=k=1kwkxnk(2)
请添加图片描述

图卷积简介

经典卷积网络无法处理图结构数据。目前图卷积实现思路:

  • 谱域图卷积
  • 空域图卷积

卷积定理

两个信号在空域的卷积的傅里叶变换等于两个信号在频域中的傅里叶变换的点乘,点乘(element-wise multiplication)是指对两个矩阵、向量或序列中的相应元素进行相乘运算。即:
F [ f 1 ( t ) ⋆ f 2 ( t ) ] = F 1 ( w ) . F 2 ( w ) (3) \mathcal{F} [f_1(t)\star f_2(t)] = F_1(w) . F_2(w) \tag{3} F[f1(t)f2(t)]=F1(w).F2(w)(3)

  • f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t) 是空域的两个信号
  • F 1 ( w ) F_1(w) F1(w) F 2 ( w ) F_2(w) F2(w) 是频域的两个信号
  • ⋆ \star 表示卷积操作
  • F \mathcal{F} F 表示傅里叶变换
  • $. $ 表示乘积操作

也可以写成:
f 1 ( t ) ⋆ f 2 ( t ) = F − 1 [ F 1 ( w ) . F 2 ( w ) ] (4) f_1(t)\star f_2(t) = \mathcal{F}^{-1} [F_1(w) . F_2(w)] \tag{4} f1(t)f2(t)=F1[F1(w).F2(w)](4)

  • F − 1 \mathcal{F}^{-1} F1 表示傅里叶逆变换

谱域图卷积实现思路

  • 将图信号 x x x 和卷积核 w w w 做傅里叶变换,得到频域信号 X X X W W W
  • 将频域信号 X X X W W W 做乘积操作,得到频域信号 Y Y Y
  • 将频域信号 Y Y Y 做傅里叶逆变换,得到图信号 y y y
  • y y y 即为图信号 x x x 和卷积核 w w w 卷积的结果

如何定义图上的傅里叶变换

基于图谱理论,图上的傅里叶变换使用图傅里叶变换(Graph Fourier Transform,GFT)来定义。GFT 的定义如下:
F G ( x ) = U T x (5) \mathcal{F}_G(x) = U^T x \tag{5} FG(x)=UTx(5)

  • x x x 是图信号
  • U U U 是图的特征向量矩阵

写成分量求和的形式为:
x ( i ) = ∑ k = 1 N u l ( i ) x ^ ( λ l ) (6) x(i) = \sum_{k=1}^N u_l(i)\hat{x}(\lambda_l) \tag{6} x(i)=k=1Nul(i)x^(λl)(6)

  • x ( i ) x(i) x(i) 表示图信号 x x x 在节点 i i i 处的值
  • u l ( i ) u_l(i) ul(i) 表示图的特征向量矩阵 U U U 的第 l l l 列的第 i i i 个元素
  • x ^ ( λ l ) \hat{x}(\lambda_l) x^(λl) 表示图信号 x x x 在特征值 λ l \lambda_l λl 处的值

拉普拉斯矩阵 (Laplacian Matrix)

拉普拉斯矩阵是图信号处理中的一个重要概念,它是图信号的频域表示。拉普拉斯矩阵的定义如下:
L = D − A (7) L = D - A \tag{7} L=DA(7)

  • D D D 是度矩阵, D i i = ∑ j A i j D_{ii} = \sum_j A_{ij} Dii=jAij
  • A A A 是邻接矩阵, A i j = 1 A_{ij} = 1 Aij=1 表示节点 i i i 和节点 j j j 之间有边,否则 A i j = 0 A_{ij} = 0 Aij=0
  • L L L 是拉普拉斯矩阵,否则 L i j = 0 L_{ij} = 0 Lij=0,$。

拉普拉斯矩阵计算示例
在这里插入图片描述

  • L i j = − 1 L_{ij} = -1 Lij=1 表示节点 i i i 和节点 j j j 之间有边
  • L i i = D i i L_{ii} = D_{ii} Lii=Dii 拉普拉斯对角线值等于度矩阵对角线值
  • L i j = 0 L_{ij} = 0 Lij=0 表示节点 i i i 和节点 j j j 之间没有边

拉普拉斯矩阵的性质

拉普拉斯矩阵是半正定矩阵,即 x T L x ≥ 0 x^T L x \geq 0 xTLx0,其中 x x x 是任意向量。证明过程:
x T L x = x T D x − x T A x = ∑ i = 1 N d i x i 2 − ∑ i , j = 1 N a i j x i x j = 1 2 ∑ i , j = 1 N a i j ( x i − x j ) 2 ≥ 0 (8) x^T L x = x^T D x - x^T A x = \sum_{i=1}^N d_i x_i^2 - \sum_{i,j=1}^N a_{ij} x_i x_j = \frac{1}{2} \sum_{i,j=1}^N a_{ij} (x_i - x_j)^2 \geq 0 \tag{8} xTLx=xTDxxTAx=i=1Ndixi2i,j=1Naijxixj=21i,j=1Naij(xixj)20(8)

  • n 阶对称矩阵一定有 n 个线性无关的实特征值
  • 对称矩阵的不同特征值对应的特征向量相互正交,这些拯救的特征向量构成的矩阵为正交矩阵
  • 拉普拉斯矩阵的特征值都是非负的,且至少有一个特征值为 0
  • 拉普拉斯矩阵的特征值为 0 的特征向量对应的是图的连通分量的个数,即 L L L 的零特征值的个数等于图的连通分量的个数。

拉普拉斯矩阵的谱分解

特征分解(Eigen decomposition),又称为谱分解(Spectral decomposition),是线性代数中的一个分解,将一个矩阵分解为特征向量和特征值的形式。拉普拉斯矩阵的谱分解如下:
L = U Λ U T (9) L = U \Lambda U^T \tag{9} L=UΛUT(9)

  • U U U 是拉普拉斯矩阵的特征向量矩阵
  • Λ \Lambda Λ 是拉普拉斯矩阵的特征值矩阵
  • U T U^T UT U U U 的转置矩阵

对拉普拉斯谱分解后,n阶对称矩阵一定有n个线性无关的特征向量相互正交,这些正交的特征向量构成的矩阵为正交矩阵。因此,拉普拉斯矩阵的特征向量矩阵 U U U 是正交矩阵,即 U T U = I U^T U = I UTU=I,其中 I I I 是单位矩阵。

拉普拉斯矩阵与拉普拉斯算子

拉普拉斯矩阵与拉普拉斯算子是两个不同的概念,但是它们之间有一定的联系。拉普拉斯算子的定义如下:
Δ f = ∇ ⋅ ∇ f = ∑ i = 1 n ∂ 2 f ∂ x i 2 (10) \Delta f = \nabla \cdot \nabla f = \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2} \tag{10} Δf=f=i=1nxi22f(10)

  • ∇ \nabla 是梯度算子
  • ∇ ⋅ \nabla \cdot 是散度算子
  • Δ \Delta Δ 是拉普拉斯算子
  • f f f 是函数
  • x i x_i xi 是第 i i i 个自变量
  • n n n 是自变量的个数
  • ∂ 2 f ∂ x i 2 \frac{\partial^2 f}{\partial x_i^2} xi22f 是函数 f f f 对自变量 x i x_i xi 的二阶偏导数
  • ∑ i = 1 n ∂ 2 f ∂ x i 2 \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2} i=1nxi22f 是函数 f f f 对所有自变量的二阶偏导数之和
  • Δ f \Delta f Δf 是函数 f f f 的拉普拉斯算子

图信号的拉普拉斯算子的定义如下:
Δ G f = U Δ f = U ∇ ⋅ ∇ f = U ∑ i = 1 n ∂ 2 f ∂ x i 2 (11) \Delta_G f = U \Delta f = U \nabla \cdot \nabla f = U \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2} \tag{11} ΔGf=UΔf=Uf=Ui=1nxi22f(11)

  • Δ G f \Delta_G f ΔGf 是图信号 f f f 的拉普拉斯算子
  • U U U 是拉普拉斯矩阵的特征向量矩阵
  • Δ f \Delta f Δf 是函数 f f f 的拉普拉斯算子
  • ∇ ⋅ ∇ f \nabla \cdot \nabla f f 是函数 f f f 的拉普拉斯算子

对以上的公式如何得到呢?对于二维图像的拉普拉斯算子,我们可以将其写成如下的形式:
Δ f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 (12) \Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \tag{12} Δf=x22f+y22f(12)
离散形式的拉普拉斯算子可以写成如下的形式:
Δ f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 = f ( x + 1 , y ) + f ( x − 1 , y ) − 2 f ( x , y ) h 2 + f ( x , y + 1 ) + f ( x , y − 1 ) − 2 f ( x , y ) h 2 (13) \Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{f(x+1,y) + f(x-1,y) - 2f(x,y)}{h^2} + \frac{f(x,y+1) + f(x,y-1) - 2f(x,y)}{h^2} \tag{13} Δf=x22f+y22f=h2f(x+1,y)+f(x1,y)2f(x,y)+h2f(x,y+1)+f(x,y1)2f(x,y)(13)
其中 h h h 是步长。将上式写成矩阵形式:
Δ f = 1 h 2 [ 0 1 0 1 − 4 1 0 1 0 ] [ f ( x − 1 , y ) f ( x , y ) f ( x + 1 , y ) ] + 1 h 2 [ 0 1 0 1 − 4 1 0 1 0 ] [ f ( x , y − 1 ) f ( x , y ) f ( x , y + 1 ) ] (14) \Delta f = \frac{1}{h^2} \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} f(x-1,y) \\ f(x,y) \\ f(x+1,y) \end{bmatrix} + \frac{1}{h^2} \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} f(x,y-1) \\ f(x,y) \\ f(x,y+1) \end{bmatrix} \tag{14} Δf=h21 010141010 f(x1,y)f(x,y)f(x+1,y) +h21 010141010 f(x,y1)f(x,y)f(x,y+1) (14)

我们这里令 h = 1,将上式写成矩阵卷积形式:

Δ f ( x ) = [ 0 1 0 1 − 4 1 0 1 0 ] ⋆ f ( x ) (16) \Delta f(x) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \star f(x) \tag{16} Δf(x)= 010141010 f(x)(16)
可以看出,二维图像的拉普拉斯算子,等于周围节点和自身节点的差值的和。对于图信号的拉普拉斯算子,节点的拉普拉斯算子,可以定义为与其相连节点与自身节点的差值的和,我们可以将其写成如下的形式:
Δ G f = ∑ j = 1 N A i j ( f i − f j ) = ∑ j = 1 N A i j f i − ∑ j = 1 N A i j f j = ∑ j = 1 N A i j f i − ∑ j = 1 N A j i f j (17) \Delta_G f = \sum_{j=1}^N A_{ij} (f_i - f_j) = \sum_{j=1}^N A_{ij} f_i - \sum_{j=1}^N A_{ij} f_j = \sum_{j=1}^N A_{ij} f_i - \sum_{j=1}^N A_{ji} f_j \tag{17} ΔGf=j=1NAij(fifj)=j=1NAijfij=1NAijfj=j=1NAijfij=1NAjifj(17)

  • A i j A_{ij} Aij 表示节点 i i i 和节点 j j j 之间的边的权重
  • ( f i − f j ) (f_i - f_j) (fifj) 表示节点 i i i 和节点 j j j 之间的差值

写成矩阵形式有:
Δ G f = [ Δ f 1 Δ f 2 ⋮ Δ f N ] = [ A 11 f 1 − ∑ j = 1 N A 1 i f j ⋮ A n n f n − ∑ j = 1 N A N i f j ] = D f − A f = L f (18) \begin{aligned} \Delta_G f =& \begin{bmatrix} \Delta f_1 \\ \Delta f_2 \\ \vdots \\ \Delta f_N \end{bmatrix} = & \begin{bmatrix} A_{11}f_1 - \sum_{j=1}^N A_{1i} f_j \\ \vdots \\ A_{nn}f_n - \sum_{j=1}^N A_{Ni} f_j \\ \end{bmatrix} = & Df - Af =Lf\tag{18} \end{aligned} ΔGf= Δf1Δf2ΔfN = A11f1j=1NA1ifjAnnfnj=1NANifj =DfAf=Lf(18)

  • L L L 为拉普拉斯矩阵
  • 对信号 f f f 左乘一个 拉普拉斯矩阵可以得到信号 f f f的拉普拉斯算子。

图傅里叶变换

图上的信号表示

图上的信号一般表达为一个向量。假设有n个节点。图上的信号记为:
x = [ x 1 x 2 ⋮ x n ] (19) x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \tag{19} x= x1x2xn (19)

  • x i ∈ R x_i \in \mathbb{R} xiR 表示节点 i i i 上的信号.

经典傅里叶变换

经典傅里叶变换的定义如下:
傅里叶变换公式如下:
X ( ω ) = ∫ − ∞ ∞ x ( t ) e − j ω t d t (20) X(\omega) = \int_{-\infin}^{\infin} x(t) e^{-j \omega t} dt \tag{20} X(ω)=x(t)etdt(20)
离散傅里叶变换公式如下:
X ( ω ) = ∑ n = 0 N − 1 x ( n ) e − j ω n (21) X(\omega) = \sum_{n=0}^{N-1} x(n) e^{-j \omega n} \tag{21} X(ω)=n=0N1x(n)ejωn(21)

经典傅里叶变换,是将一个函数表示成了一个若干个正交基函数的线性组合。对于图上的信号,如果要进行一个傅里叶变换,很自然的我们想到,我们也要找到一组正交基,通过这组正交基的线性组合来表达 图上的信号。

矩阵形式为:
x = U x ^ (23) x = U \hat{x} \tag{23} x=Ux^(23)

  • x x x 表示图上的信号
  • U U U 表示图的特征向量矩阵
  • x ^ \hat{x} x^ 表示图信号 x x x 的傅里叶系数

如何求 x ^ \hat{x} x^ 呢?我们可以将上式两边同时左乘 U T U^T UT,得到:
U T x = U T U x ^ = I x ^ = x ^ (24) U^T x = U^T U \hat{x} = I \hat{x} = \hat{x} \tag{24} UTx=UTUx^=Ix^=x^(24)

  • I I I 表示单位矩阵
  • x ^ \hat{x} x^ 表示图信号 x x x 的傅里叶系数
  • U U U 表示图的特征向量矩阵
  • x x x 表示图上的信号
  • U T U^T UT 表示 U U U 的转置矩阵

因此,我们可以得到:
x ^ = U T x (25) \hat{x} = U^T x \tag{25} x^=UTx(25)

  • x ^ \hat{x} x^ 表示图信号 x x x 的傅里叶系数
  • U U U 表示图的特征向量矩阵
  • x x x 表示图上的信号
  • U T U^T UT 表示 U U U 的转置矩阵
  • x ^ \hat{x} x^ 表示图信号 x x x 的傅里叶系数

特征向量基的性质

  • 拉普拉斯矩阵的特征值担任了和频率类似的位置。
    • 特征值越大,对应的特征向量的频率越高。
    • 特征值越小,对应的特征向量的频率越低。
    • 特征值为 0 的特征向量对应的是图的连通分量的个数,即 L L L 的零特征值的个数等于图的连通分量的个数。
  • 拉普拉斯矩阵的特征向量担任了基函数的位置。
    • 0特征值对应一个常数特征向量,这个和傅里叶变换中的常数项类似。
    • 低特征值对应的特征向量比较平滑,高特征值对应的特征向量变换比较剧烈。两者对应于低频基函数和高频基函数。

如何理解这两个结论呢?
我们使用图拉普拉斯的二次型(graph Laplacian quadratic form) 来定义信号的平滑程度。其表示有边相连的两个节点信号的平方差乘以权重的求和,其值越小,代表 越平滑

x ⊤ L x = 1 2 ∑ i , j = 1 N A i j ( x i − x j ) 2 (28) x^{\top} L x = \frac{1}{2}\sum_{i,j=1}^N A_{ij} (x_i - x_j)^2 \tag{28} xLx=21i,j=1NAij(xixj)2(28)

又因为
x ⊤ L x = x ⊤ U Λ U ⊤ x = x ^ ⊤ Λ x ^ = ∑ k = 1 N λ k x ^ 2 ( λ k ) (29) x^{\top} L x = x^{\top} U \Lambda U^{\top} x = \hat{x}^{\top} \Lambda \hat{x} = \sum_{k=1}^N \lambda_k \hat{x}^2(\lambda_k) \tag{29} xLx=xUΛUx=x^Λx^=k=1Nλkx^2(λk)(29)
所以对应特征值越小,对应的特征向量越平滑。

总结

利用图傅里叶变换,可以将定义在图节点上的信号 x ∈ R n x\in\mathbb{R}^n xRn 从空间域转换到谱域。

  • 空间域到谱域的变换: x → x ^ = U T x x\rightarrow \hat{x} = U^T x xx^=UTx
  • 谱域到空间域的变换: x ^ → x = U x ^ \hat{x} \rightarrow x = U \hat{x} x^x=Ux^
  • 其中 L = U Λ U − 1 L = U \Lambda U^{-1} L=UΛU1

卷积定理

  • 空间域的卷积定理: x ⋆ h → X ( ω ) H ( ω ) x\star h \rightarrow X(\omega) H(\omega) xhX(ω)H(ω)

x ⋆ g = F − 1 ⊙ [ X ( ω ) H ( ω ) ] = U ( U ⊤ x ⊙ U ⊤ g ) (30) x \star g = \mathcal{F}^{-1} \odot [X(\omega) H(\omega)] = U(U^{\top}x \odot U^{\top}g) \tag{30} xg=F1[X(ω)H(ω)]=U(UxUg)(30)
如果以矩阵乘法的形式表达这个公式,去掉 harmand 乘积。同时,通常我们并不关心空间域上的滤波器信号g是什么样子,只关心其在频率域的情况。

g θ = ( U ⊤ g ) = diag ( λ g ) = diag ( ( ^ λ ) ) g_{\theta} = (U^{\top}g) = \text{diag} (\lambda g) =\text{diag} (\hat(\lambda)) gθ=(Ug)=diag(λg)=diag((^λ))

则公式等价转换成下式:
x ⋆ g = U diag ( g ^ ) U ⊤ x (31) x \star g =U \text{diag}(\hat{g}) U^{\top} x \tag{31} xg=Udiag(g^)Ux(31)

  • diag ( g ^ ( λ i ) ) \text{diag}(\hat{g}(\lambda_i)) diag(g^(λi)) 是谱域卷积的一个分量。

三个经典图谱卷积模型

卷积网络中不同层的特征图:
在这里插入图片描述

SCNN

核心思想:

  • 用可学习的对角矩阵来替代谱域的卷积核,从而实现图卷积操作。

ChebNet

Chebyshev多项式
Chebyshev多项式是一类具有重要应用的正交多项式,其定义如下:
T 0 ( x ) = 1 , T 1 ( x ) = x , T n + 1 ( x ) = 2 x T n ( x ) − T n − 1 ( x ) (32) T_0(x) = 1, T_1(x) = x, T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \tag{32} T0(x)=1,T1(x)=x,Tn+1(x)=2xTn(x)Tn1(x)(32)

矩阵形式为:
T 0 ( L ) = I , T 1 ( L ) = L , T n + 1 ( L ) = 2 L T n ( L ) − T n − 1 ( L ) (32) T_0(L) = I, T_1(L) = L, T_{n+1}(L) = 2LT_n(L) - T_{n-1}(L) \tag{32} T0(L)=I,T1(L)=L,Tn+1(L)=2LTn(L)Tn1(L)(32)

多项式插值:
f ( x ) = ∑ k = 0 K − 1 α k x k − 1 (33) f(x) = \sum_{k=0}^{K-1} \alpha_k x^{k-1} \tag{33} f(x)=k=0K1αkxk1(33)
切比雪夫插值将幂函数换成了切比雪夫多项式的项:
f ( x ) = ∑ k = 0 K − 1 α k T k ( x ) (34) f(x) = \sum_{k=0}^{K-1} \alpha_k T_k(x) \tag{34} f(x)=k=0K1αkTk(x)(34)

ChebNet的核心思想:

  • 利用切比雪夫多项式来近似谱域的卷积核,从而实现图卷积操作。
  • 利用切比雪夫多项式的递归性质,可以将谱域的卷积核的近似程度控制在任意的精度范围内。

x ⋆ g θ = U g θ U ⊤ x = U ∑ k = 0 K β k T k ( Λ ) U ⊤ x = ∑ k = 0 K β k T k ( L ) ( U Λ U ⊤ ) x = ∑ k = 0 K β k T k ( L ) x (35) \begin{aligned} x \star g_{\theta} =& Ug_{\theta}U^{\top}x \\ =& U \sum_{k=0}^{K}\beta_k T_k(\Lambda) U^{\top} x \\ =& \sum_{k=0}^{K}\beta_k T_k(L)(U \Lambda U^{\top}) x \\ =& \sum_{k=0}^{K}\beta_k T_k(L) x \\ \end{aligned} \tag{35} xgθ====UgθUxUk=0KβkTk(Λ)Uxk=0KβkTk(L)(UΛU)xk=0KβkTk(L)x(35)

  • 卷积核只有 K+1个可学习的参数,一般 k 远小于 n, 因此参数量大大减少。
  • 采用切比雪夫多项式代替谱域的卷积后,不需要特征值分解了。
  • 卷积核又严格的空间局部性,同时,k就是卷积核的感受野半径。即中心顶点K阶最邻近节点作为领域节点。
    这样我们就可以不用去计算拉普拉斯分解,直接使用拉普拉斯矩阵来进行卷积操作了。

GCN

GCN的核心思想:

  • 利用一阶切比雪夫多项式来近似谱域的卷积核,从而实现图卷积操作。
  • 利用一阶切比雪夫多项式的递归性质,可以将谱域的卷积核的近似程度控制在任意的精度范围内。

x ⋆ g θ = U g θ U ⊤ x = ∑ k = 0 k β k T k ( L ^ ) x = ∑ k = 0 1 β k T k ( L ^ ) x = β 0 T 0 ( L ^ ) x + β 1 T 1 ( L ^ ) x = ( β 0 + β 1 L ^ ) x = ( β 0 + β 1 ( L − I n ) ) x = ( β 0 − β 1 ( D − 1 / 2 W D − 1 / 2 ) ) x = ( θ ( D − 1 / 2 W D − 1 / 2 + I n ) ) x (36) \begin{aligned} x \star g_{\theta} =& Ug_{\theta}U^{\top}x \\ =& \sum_{k=0}^{k}\beta_k T_k(\hat{L})x \\ =& \sum_{k=0}^1 \beta_k T_k(\hat{L})x \\ =& \beta_0 T_0(\hat{L})x + \beta_1 T_1(\hat{L})x \\ =& (\beta_0 + \beta_1 \hat{L})x =& (\beta_0 + \beta_1(L - I_n))x \\ =& (\beta_0 - \beta_1(D^{-1/2WD^{-1/2}}))x \\ =& (\theta(D^{-1/2WD^{-1/2}} + I_n))x \\ \end{aligned} \tag{36} xgθ=======UgθUxk=0kβkTk(L^)xk=01βkTk(L^)xβ0T0(L^)x+β1T1(L^)x(β0+β1L^)x=(β0β1(D1/2WD1/2))x(θ(D1/2WD1/2+In))x(β0+β1(LIn))x(36)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1226884.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

常见Web安全

一.Web安全概述 以下是百度百科对于web安全的解释: Web安全,计算机术语,随着Web2.0、社交网络、微博等等一系列新型的互联网产品的诞生,基于Web环境的互联网应用越来越广泛,企业信息化的过程中各种应用都架设在Web平台…

性格懦弱怎么办?如何改变懦弱的性格?

性格懦弱是一个比较常见的话题了,懦弱带来的苦恼和困扰,深深影响着我们的生活,人际关系,以及事业的发展。然后如何摆脱懦弱,却并非易事,尤其是对于成年人来说,这种懦弱的性格特征,已…

关于缓存和数据库一致性问题的深入研究

如何保证缓存和数据库一致性,这是一个老生常谈的话题了。 但很多人对这个问题,依旧有很多疑惑: 到底是更新缓存还是删缓存?到底选择先更新数据库,再删除缓存,还是先删除缓存,再更新数据库&…

算法设计与分析复习--贪心(一)

文章目录 上一篇贪心的性质活动安排问题贪心背包问题最优装载哈夫曼编码下一篇 上一篇 算法设计与分析复习–动态规划 贪心的性质 贪心和动态规划都要求问题具有最优子结构; 可用贪心方法时,动态规划可能不适用 可用动态规划方法时,贪心方法…

C/C++关于main函数参数问题

文章目录 前言不带参数的main带参数的main为什么会有带参数的main总结 前言 每次写C/C程序,基本上就是一个int main(){return 0;}。但是后来在linux里面涉及到很多带参数的main函数,我一直不太理解,这里就写篇博客记录一下。 不带参数的main…

10、背景分离 —— 大津算法

上一节学习了通过一些传统计算机视觉算法,比如Canny算法来完成一个图片的边缘检测,从而可以区分出图像的边缘。 今天再看一个视觉中更常见的应用,那就是把图片的前景和背景的分离。 前景和背景 先看看什么是前景什么是背景。 在图像处理和计算机视觉中,"前景"…

SpringCloudAlibaba系列之Nacos服务注册与发现

目录 说明 认识注册中心 Nacos架构图 Nacos服务注册与发现实现原理总览 SpringCloud服务注册规范 服务注册 心跳机制与健康检查 服务发现 主流服务注册中心对比 小小收获 说明 本篇文章主要目的是从头到尾比较粗粒度的分析Nacos作为注册中心的一些实现,很…

AcWing 3. 完全背包问题 学习笔记

有 N� 种物品和一个容量是 V� 的背包,每种物品都有无限件可用。 第 i� 种物品的体积是 vi��,价值是 wi��。 求解将哪些物品装入背包,可使这些物品的总体积不…

Elasticsearch中的语义检索

一、传统检索的背景痛点 和传统的基于关键词的匹配方式不同,语义检索,利用大模型,将文本内容映射到神经网络空间,最终记忆token做检索。 例如想要搜索中国首都,例如数据集中,只有一篇文章在描述北京&#x…

Zabbix实现故障自愈

一、简介 Zabbix agent 可以运行被动检查和主动检查。 在被动检查模式中 agent 应答数据请求。Zabbix server(或 proxy)询求数据,例如 CPU load,然后 Zabbix agent 返还结果。 主动检查处理过程将相对复杂。Agent 必须首先从 Z…

优卡特脸爱云一脸通智慧管理平台权限绕过漏洞复现(CVE-2023-6099)

0x01 产品简介 脸爱云一脸通智慧管理平台是一套功能强大,运行稳定,操作简单方便,用户界面美观,轻松统计数据的一脸通系统。无需安装,只需在后台配置即可在浏览器登录。 功能包括:系统管理中心、人员信息管理…

[qemu逃逸] XNUCA2019-vexx

前言 这题没有去符合, 题目本身不算难. 用户名: root 密码: goodluck 设备逆向 题目没有去符合, 所以其实没啥好讲了, 就列一些笔者认为关键的地方 这里的定义了两块 mmio 内存区. 然后看下设备实例结构体: 可以看到 QEMUTimer, 所以多半就是劫持 dma_timer 了. 漏洞点在…

使用Qt实现多人聊天工作室

目录 1、项目背景 2、技术分析 3、架构设计 3、1 服务器架构 3.1.1 模块划分 3.1.2 模块之间的交互 3、2 客户端架构 3.2.1 模块划分 3.2.2 模块之间交互 4、实现过程 4、1 功能实现 4.1.1 用户登录注册功能​编辑 4.1.2 用户主界面功能 4、2 设计实现 4.2.1 登录…

代码随想录算法训练营|五十六天

回文子串 647. 回文子串 - 力扣(LeetCode) dp含义:表示区间内[i,j]是否有回文子串,有true,没有false。 递推公式:当s[i]和s[j]不相等,false;相等时,情况一,…

Springboot框架中使用 Redis + Lua 脚本进行限流功能

Springboot框架中使用 Redis Lua 脚本进行限流功能 限流是一种用于控制系统资源利用率或确保服务质量的策略。在Web应用中,限流通常用于控制接口请求的频率,防止过多的请求导致系统负载过大或者防止恶意攻击。 什么是限流? 限流是一种通过…

Go——一、Go语言安装及介绍

Go 一、Windows下安装Go1、下载Go2、配置环境变量3、下载Jetbrain下的GoLang4、编写hello world5、编译和执行 二、Go语言介绍1、开发文档2、Go语言核心开发团队3、为什么要创建Go4、Go语言发展史5、Go语言特点6、Golang执行过程6.1 执行过程分析6.2 编译是什么 7、开发注意事项…

腾讯微服务平台TSF学习笔记(一)--如何使用TSF的Sidecar过滤器实现mesh应用的故障注入

Mesh应用的故障注入 故障注入前世今生Envoy设置故障注入-延迟类型设置故障注入-延迟类型并带有自定义状态码总结 故障注入前世今生 故障注入是一种系统测试方法,通过引入故障来找到系统的bug,验证系统的稳健性。istio支持延迟故障注入和异常故障注入。 …

中国制库:创新引领,效率突破,塑造行业新标准

制库是一家专注于企业知识应用的在线SAAS平台,主要构成部分包括制度、表单、流程、制问和集合。作为集合了各种管理制度的平台,制库不仅提供了丰富的制度资源,还通过SAAS版实现了知识集成、修订和应用的全流程。目标是打造中国全面的企业制度库,帮助企业快速建立核心管理系统,并…