详谈动态规划问题并解最大子数组和

news2025/1/20 1:40:43

今天刷力扣又学会了一种算法----动态规划,经过我查阅不少资料后,这些我总结的分享给大家

动态规划是什么?

动态规划(Dynamic Programming)是一种求解最优化问题的数学方法,它通常用于解决具有重叠子问题和最优子结构性质的问题。动态规划的基本思想是将原问题拆解成若干个子问题,然后通过求解子问题的最优解来得到原问题的最优解。

动态规划有两个关键概念:重叠子问题和最优子结构。

  1. 重叠子问题: 在动态规划中,原问题可以被拆解成多个具有相同结构的子问题,而这些子问题可能会被多次求解。动态规划通过存储已解决的子问题的解,避免重复计算,提高效率。

  2. 最优子结构: 问题的最优解可以通过子问题的最优解来构造。也就是说,问题的整体最优解是由各个子问题的最优解组合而成的。这使得我们可以通过求解子问题来逐步推导出原问题的最优解。

动态规划算法的一般步骤如下:

  1. 定义状态: 描述问题局部最优解的变量,这些变量可以表示问题的不同方面。

  2. 找到状态转移方程: 定义各个状态之间的关系,即问题的最优解如何由子问题的最优解推导而来。

  3. 初始化: 给定问题的初始状态,通常是问题规模较小时的情况,然后逐步扩展规模。

  4. 递推计算: 利用状态转移方程,从初始状态开始逐步计算得到问题的最优解。

  5. 解决原问题: 根据计算得到的最优解,得到原问题的最优解。

动态规划常被用于解决许多问题,如最短路径问题、背包问题、编辑距离问题等。这种方法在解决那些可以被拆解成子问题,并且这些子问题存在重叠的情况下特别有效。

如果觉得以上说法不是太通俗理解我们可以一边结合题,一边来详解什么是动态规划!

使用动态规划求解最大子数组和

先给出一个算法题(摘自力扣)

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

 理解题意:

题目要我们找出和最大的连续子数组的值是多少,「连续」是关键字,连续很重要,不是子序列。

题目只要求返回结果,不要求得到最大的连续子数组是哪一个。这样的问题通常可以使用「动态规划」解决。

如何定义子问题(定义状态)

我们 不知道和最大的连续子数组一定会选哪一个数,那么我们可以求出 所有 经过输入数组的某一个数的连续子数组的最大和。

经过分析,我们列出子问题如下:

子问题 1:以 −2 结尾的连续子数组的最大和是多少;
子问题 2:以 1 结尾的连续子数组的最大和是多少;
子问题 3:以 −3 结尾的连续子数组的最大和是多少;
子问题 4:以 4 结尾的连续子数组的最大和是多少;
子问题 5:以 −1 结尾的连续子数组的最大和是多少;
子问题 6:以 2 结尾的连续子数组的最大和是多少;
子问题 7:以 1 结尾的连续子数组的最大和是多少;
子问题 8:以 −5 结尾的连续子数组的最大和是多少;
子问题 9:以 4 结尾的连续子数组的最大和是多少。

我们单独看子问题 1 和子问题 2:

子问题 1:以 −2 结尾的连续子数组的最大和是多少;
以 −2结尾的连续子数组是 [-2],因此最大和就是 −2。

子问题 2:以 1 结尾的连续子数组的最大和是多少;
以 1 结尾的连续子数组有 [-2,1] 和 [1] ,其中 [-2,1] 就是在「子问题 1」的后面加上 1 得到。−2+1=−1<1 ,因此「子问题 2」 的答案是 1。

大家发现了吗,如果编号为 i 的子问题的结果是负数或者 0 ,那么编号为 i + 1 的子问题就可以把编号为 i 的子问题的结果舍弃掉(这里 i 为整数,最小值为 1 ,最大值为 8),这是因为:

一个数 a 加上负数的结果比 a 更小;
一个数 a 加上 0的结果不会比 a 更大;
而子问题的定义必须以一个数结尾,因此如果子问题 i 的结果是负数或者 0,那么子问题 i + 1 的答案就是以 nums[i] 结尾的那个数。

定义状态(定义子问题)

dp[i]:表示以 nums[i] 结尾的连续子数组的最大和。

「结尾」和「连续」是关键字。

状态转移方程(描述子问题之间的联系)
根据状态的定义,由于 nums[i] 一定会被选取,并且以 nums[i] 结尾的连续子数组与以 nums[i - 1] 结尾的连续子数组只相差一个元素 nums[i] 。

假设数组 nums 的值全都严格大于 0,那么一定有 dp[i] = dp[i - 1] + nums[i]。

可是 dp[i - 1] 有可能是负数,于是分类讨论:

如果 dp[i - 1] > 0,那么可以把 nums[i] 直接接在 dp[i - 1] 表示的那个数组的后面,得到和更大的连续子数组;
如果 dp[i - 1] <= 0,那么 nums[i] 加上前面的数 dp[i - 1] 以后值不会变大。于是 dp[i] 「另起炉灶」,此时单独的一个 nums[i] 的值,就是 dp[i]。
以上两种情况的最大值就是 dp[i] 的值,写出如下状态转移方程:

dp[i]=\left\{\begin{matrix} dp[i-1]+nums[i],if & dp[i-1]>0 & & \\ nums[i], if &dp[i-1]\leqslant 0 \end{matrix}\right.

输出:

注意:这里状态的定义不是题目中的问题的定义,不能直接将最后一个状态返回回去

我们需要将之前的dp全部遍历一遍,然后取最大值后返回

算法实现代码

class Solution {
    public int maxSubArray(int[] nums) {
        int len = nums.length;
        int [] dp=new int[len];
        dp[0]=nums[0];
        for(int i=1;i<len;i++){
            if(dp[i-1]<0){
                dp[i]=nums[i];
            }else{
                dp[i]=dp[i-1]+nums[i];
            }
        }
        int res=dp[0];
        for(int i=1;i<len;i++){
            res=Math.max(res,dp[i]);
        }
        return res;
    }
}

算法思路转载来源:力扣(LeetCode)

作者:liweiwei1419
链接:https://leetcode.cn/problems/maximum-subarray/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1224537.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

django理解02 前后端分离中的问题

前后端分离相对于传统方式的问题 前后端数据交换的问题跨域问题 页面js往自身程序&#xff08;django服务&#xff09;发送请求&#xff0c;这是浏览器默认接受响应 而请求其它地方是浏览器认为存在潜在危险。自动隔离请求&#xff01;&#xff01;&#xff01; 跨域问题的解决…

链表题(4)

本章内容 正文开始前给大家推荐个网站&#xff0c;前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 今天继续给大家带来链表的相关练习题。 相交链表 这道题来自力扣网&#xff0c;链接…

提升工作效率,打造精细思维——OmniOutliner 5 Pro for Mac

在当今快节奏的工作环境中&#xff0c;如何高效地组织和管理我们的思维和任务成为了关键。而OmniOutliner 5 Pro for Mac正是为此而生的一款强大工具。无论你是专业写作者、项目经理还是学生&#xff0c;OmniOutliner 5 Pro for Mac都能帮助你提升工作效率&#xff0c;打造精细…

【Linux】20、进程状态:不可中断进程、iowait、僵尸进程、dstat strace pstree

文章目录 一、进程状态1.1 iowait 分析1.2 僵尸进程1.3 小结 短时应用的运行时间比较短&#xff0c;很难在 top 或者 ps 这类展示系统概要和进程快照的工具中发现&#xff0c;你需要使用记录事件的工具来配合诊断&#xff0c;比如 execsnoop 或者 perf top。 讲到 CPU 使用率的…

HTTPS流量抓包分析中出现无法加载key

HTTPS流量抓包分析(TLSv1.2)&#xff0c;这篇文章分析的比较透彻&#xff0c;就不班门弄斧了 https://zhuanlan.zhihu.com/p/635420027 写个小问题&#xff1a;RSA密钥对话框加载rsa key文件的时候注意不要在中文目录下&#xff0c;否则会提示&#xff1a;“Enter the passwor…

赛宁网安分靶场全力支持第三届“鹏城杯”攻防演练

为加速推进我国网络安全战略与数字化进程接轨&#xff0c;创新信息系统安全防护与网络安全技术研究模式&#xff0c;促进各行业网络安全建设的融合与协作&#xff0c;由鹏城实验室和中国网络空间安全人才教育论坛联合牵头举办的第三届“鹏城杯”联邦网络靶场协同攻防演练正式启…

特征缩放和转换以及自定义Transformers(Machine Learning 研习之九)

特征缩放和转换 您需要应用于数据的最重要的转换之一是功能扩展。除了少数例外&#xff0c;机器学习算法在输入数值属性具有非常不同的尺度时表现不佳。住房数据就是这种情况:房间总数约为6至39320间&#xff0c;而收入中位数仅为0至15间。如果没有任何缩放&#xff0c;大多数…

【总结】I/O接口中的数据线,地址线,控制线,状态线传输什么信息?

数据线 方向&#xff1a;双向功能&#xff1a;在内存、寄存器和数据缓冲寄存器进行数据交换&#xff1b;接口和设备的状态信息也通过数据线传给CPU&#xff08;这里的状态指的是设备独有的&#xff0c;和状态线中的忙碌、空闲相区别&#xff09;&#xff1b;CPU对外设的控制命…

第一次组会汇报(2023/11/18)

目录 一&#xff0c;浅谈学习规划 二&#xff0c; 两个比较典型的注意力机制 ㈠SEnet ⒈结构图 ⒉机制流程讲解 ⒊源码&#xff08;pytorch框架实现&#xff09;及逐行解释 ⒋测试结果 ㈡CBAM ⒈结构图 ⒉机制流程讲解 ⒊源码&#xff08;pytorch框架实现&#xff09;…

【数据分享】2023年我国省市县三级的专精特新“小巨人”企业数量(Excel/Shp格式)

企业是经济活动的参与主体。一个城市的企业数量决定了这个城市的经济发展水平&#xff01;比如一个城市的金融企业较多&#xff0c;那这个城市的金融产业肯定比较发达&#xff1b;一个城市的制造业企业较多&#xff0c;那这个城市的制造业肯定比较发达。 之前我们给大家分享了…

『 MySQL数据库 』数据库之表的约束

文章目录 前言 &#x1f4bb;空属性约束(非空约束) &#x1f516;default约束(默认值约束,缺省) &#x1f516;列描述comment &#x1f516;数字类型长度zerofill &#x1f516;主键primary key &#x1f516;&#x1f4cd; 追加主键 &#x1f4cd;&#x1f4cd; 删除主键 &…

鞋业生产制造用什么ERP软件?能为企业带来哪些好处

鞋服这类商品的种类众多&#xff0c;同时也是我们生活当中较为常见的产品&#xff0c;各个制鞋企业有差异化的营销渠道和经营模式&#xff0c;日常生产过程存在的问题呈现多样化。 有些制鞋企业依然采用传统的管理方式&#xff0c;在这种模式之下&#xff0c;企业并不能随时掌…

97.qt qml-自定义Table之实现ctrl与shift多选

我们之前实现了:93.qt qml-自定义Table优化(新增:水平拖拽/缩放自适应/选择使能/自定义委托)-CSDN博客 实现选择使能的时候,我们只能一行行去点击选中,非常麻烦,所以本章我们实现ctrl多选与shift多选、 所以在Table控件新增两个属性: 1.实现介绍 ctrl多选实现原理:当我…

Linux命令之查看文件和权限修改操作

目录 查看文件 1. cat --- 将文件中的内容打印在输出设备 2. more --- 分页显示文件内容 3.less ---查看文件内容 4. head -- 查看文件前n行内容 5.tail -- 查看指定文件的后n行内容或实时监测文件 6. wc -- 可计算文件的字节数、字数和列数 文件搜索 1.which --- 获取…

Selenium——利用input标签上传文件

Selenium利用input标签上传文件 完整流程 打开文件上传页面选择要上传的文件点击上传按钮确认文件上传成功介绍怎么方便的获取对应元素的Xpath或者Css 简单介绍 在使用Selenium进行浏览器自动化测试时&#xff0c;文件上传是一个常见的需求。而 标签就是实现文件上传功能的…

Leetcode—206.反转链表【简单】

2023每日刷题&#xff08;三十三&#xff09; Leetcode—206.反转链表 头插法实现代码 /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/ struct ListNode* reverseList(struct ListNode* head) {if(head NULL…

MySQL 的执行原理(一)

5.1 单表访问之索引合并 我们前边说过 MySQL 在一般情况下执行一个查询时最多只会用到单个二级 索引&#xff0c;但存在有特殊情况&#xff0c;在这些特殊情况下也可能在一个查询中使用到多个二 级索引&#xff0c;MySQL 中这种使用到多个索引来完成一次查询的执行方法称之为&…

UML统一建模语言

UML包含3种构造块&#xff1a;事物、关系、图。 事物&#xff1a;模型中代表性成分的抽象关系&#xff1a;把事物结合在一起图&#xff1a;聚集了相关的事物 事物 结构事务&#xff1a;模型的静态部分&#xff0c;包括类、接口、协作、用例、主动类、构件、制品、结点 行为事…

CAD长方形纤维插件2D

插件介绍 CAD长方形纤维插件2D版本可用于在AutoCAD软件内生成随机分布的长方形纤维图形&#xff0c;生成的dwg格式模型可用于模拟二维随机分布的纤维复合材料、随机初始裂缝等&#xff0c;同时模型可导入COMSOL、Abaqus、ANSYS、Fluent等有限元软件内进行仿真分析计算。 插件…

torch.stack

看网上看多没讲的不是很明白&#xff0c;我来试试空间上的理解 # 假设是时间步T1的输出 T1 torch.tensor([[1, 2, 3],[4, 5, 6],[7, 8, 9]]) # 假设是时间步T2的输出 T2 torch.tensor([[10, 20, 30],[40, 50, 60],[70, 80, 90]])输出&#xff1a; print(torch.stack((T1,T2…