探索亚马逊大语言模型:开启人工智能时代的语言创作新篇章

news2024/12/23 9:27:24

文章目录

  • 前言
  • 一、大语言模型是什么?
    • 应用范围
  • 二、Amazon Bedrock
  • 总结


前言

想必大家在ChatGPT的突然兴起,大家多多少少都会有各种各样的问题,比如:大语言模型和生成式AI有什么关系呢?大语言模型为什么这么火?一提到大语言模型,想必大家第一个想到的就是ChatGPT这样的自然语言处理工具,那么大语言模型是什么?大语言模型和生成式AI是什么关系?就让我以亚马逊云科技为例子,浅显易懂地带你入门大语言模型吧。

一、大语言模型是什么?

简单来说就是大语言模型 是指使用大量文本数据训练的深度学习模型,可以生成自然语言文本或理解语言文本。
在这里插入图片描述

大语言模型的这些参数是在大量文本数据上训练的。现有的大语言模型主要采用 Transformer 模型架构,并且在很大程度上扩展了模型大小、预训练数据和总计算量。他们可以更好地理解自然语言,并根据给定的上下文(例如 prompt)生成高质量的文本。其中某些能力(例如上下文学习)是不可预测的,只有当模型大小超过某个水平时才能观察到。
在这里插入图片描述
随着近年来ChatGPT的流行,在每个领域都产生了不小的影响。现在整个业界呼声最高的是,哪里有大语言模型可用。大语言模型虽好,但个人开发者和企业级应用开发、构建和调优自己的大语言模型是很困难的,于是,Amazon Bedrock便应运而生。
在这里插入图片描述
我觉得Amazon Bedrock相比于其他模型而言最重要的特色,就是让开发者能够轻松定制大语言模型,并构建属于自己的生成式AI应用程序。

通俗地来讲,就是对于大语言模型的应用场景,绝大多数的客户并不需要自己从零开始来训练模型,不能依赖一个万能的、单一的大语言模型来应对各种任务,正确的做法应该是,访问多个模型,然后根据自己的需求和数据来定制自己的模型。这也是为什么Amazon Bedrock 被称作是大语言模型“全家桶”

应用范围

文本生成: 大语言模型可以生成自然语言文本,例如文章、故事、诗歌等。它可以根据给定的上下文或提示生成连贯、富有创意的文本内容。

机器翻译: 大语言模型可以应用于机器翻译任务,将一种语言的文本翻译成另一种语言,帮助人们理解并跨越语言障碍。

对话系统: 基于大语言模型的对话系统可以与用户进行自然语言交互,理解用户输入并生成有意义的回复。这些对话系统在客户服务、智能助手等领域有广泛应用。

文本摘要: 大语言模型可以应用于文本摘要任务,将一篇长篇文章或文档自动地提炼出关键信息,生成简洁准确的摘要。

搜索引擎优化: 大语言模型可以用于搜索引擎,帮助提高搜索结果的准确性和相关性,让用户更容易找到他们需要的信息。

智能写作助手: 大语言模型可以用于辅助写作,提供纠错、建议改进、生成文案等功能,提高写作效率和质量。

除了以上六点,大语言模型还可以用于舆情分析、自动代码生成、自动问答系统等领域。随着技术的发展和应用的拓展,大语言模型在各个领域都有着潜力和广泛的应用前景。

二、Amazon Bedrock

在大语言模型发展如此向好的未来前景下,在今年9月,亚马逊云科技正式发布Amazon Bedrock,这是一套生成式AI全托管服务,包含业界领先的基础模型和构建生成式AI应用程序所需的一系列功能。大家可以快去体验一下:Amazon Bedrock
在这里插入图片描述

Amazon Bedrock汇聚了业内几乎所有领先的大语言模型,面对不同应用场景,它可以让人们只需通过单一API就能用上来自AI21 Labs、Anthropic、Cohere、Meta Llama2、Stability AI等公司的先进大语言模型来构建自己的应用。

在Amazon Bedrock的基础之上,企业可以更方便、快速地尝试各种领先的基础模型,进行提示工程,完成微调和检索增强生成(RAG)等动作,使用自身专有数据定制模型。
在这里插入图片描述

在大语言模型方面,除了Amazon Bedrock,亚马逊云科技还提供了Amazon SageMaker JumpStart等工具和框架,开发者能够更轻松地构建、训练和部署自己的大语言模型。这些工具为开发者提供了强大的计算能力和高效的模型训练环境,以便更好地探索自然语言生成的潜力。

Amazon Bedrock 有以下优势:

  1. 可以选择领先的基础模型
  2. 可以利用数据轻松定制化模型
  3. 可以动态调用API来执行任务的完全托管代理
  4. RAG提供本机支持,利用专有数据扩展FM的功能
  5. 拥有数据安全性和合规性认证

总结

其实大语言模型并不难理解,大语言模型可以被视为生成式AI的一种特例,专注于自然语言生成。而如何能让更多人接触到大语言模型呢?我们如何能够亲自感受大语言模型与生成式AI的魅力呢?亚马逊云科技 提供的服务,正在让众多这场 AI 浪潮的旁观者变成参与者。如果对大语言模型与AI感兴趣,还想了解更多大语言模型相关知识,那就前往亚马逊云科技官网 :amazon.com开始自由探索吧。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1222849.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

python3-- Pillow10 ‘FreeTypeFont‘ object has no attribute ‘getsize‘报错解决

文章目录 一、问题二. 解决方法:1.方法12.方法2 三. 总结 一、问题 使用pillow10进行图片文字合成时获取文字大小失败 AttributeError: FreeTypeFont object has no attribute getsize二. 解决方法: 1.方法1 降级Pillow pip install Pillow9.5.0再去…

嵌入式QTGit面试题

自己在秋招过程中遇到的QT和嵌入式和Git相关的面试题,因为比较少就一起放了 QT connect第5个参数是什么? Qt::AutoConnection: 默认值,使用这个值则连接类型会在信号发送时决定。 如果接收者和发送者在同一个线程,则…

【DataV可视化工具详解】

文章目录 前言一、什么是DataV?二、主要特点1. 强大的图表库2. 灵活的数据接入3.实时数据展示4. 易于定制的仪表盘 三、应用场景1.业务监控与分析2.大屏展示3.数据洞察与决策支持 四、例图总结我是将军,我一直都在,。! 前言 今天…

⑩③【MySQL】详解SQL优化

个人简介:Java领域新星创作者;阿里云技术博主、星级博主、专家博主;正在Java学习的路上摸爬滚打,记录学习的过程~ 个人主页:.29.的博客 学习社区:进去逛一逛~ SQL优化 ⑩③【MySQL】了解并掌握SQL优化1. 插…

杭州-区块链前瞻性论坛邀请函​

2023密码与安全前瞻性论坛邀请函 生成合法节点或非法节点,测试共识协议

C++各种字符转换

C各种字符转换 一.如何将char数组转化为string类型二. string转char数组:参考 一.如何将char数组转化为string类型 在C中,可以使用string的构造函数或者赋值操作符来将char数组转换为string类型。 方法1:使用string的构造函数 const char* c…

【docker】Docker网络与iptables

Docker能为我们提供很强大和灵活的网络能力,很大程度上要归功于与iptables的结合。在使用时,你可能没有太关注到 iptables在其中产生的作用,这是因为Docker已经帮我们自动的完成了相关的配置。 iptables在Docker中的应用主要是用于网络流量控…

4.5 Windows驱动开发:实现进程数据转储

多数ARK反内核工具中都存在驱动级别的内存转存功能,该功能可以将应用层中运行进程的内存镜像转存到特定目录下,内存转存功能在应对加壳程序的分析尤为重要,当进程在内存中解码后,我们可以很容易的将内存镜像导出,从而更…

解决k8s node节点报错: Failed to watch *v1.Secret: unknown

现象: 这个现象是发生在k8s集群证书过期,重新续签证书以后。 记得master节点的/etc/kubernetes/kubelet.conf文件已经复制到node节点了。 但是为什么还是报这个错,然后运行证书检查命令看一下: 看样子是差/etc/kubernetes/pki/…

一种基于NB‑IOT的粮库挡粮门异动监测装置

一种基于NB‑IOT的粮库挡粮门异动监测装置,包括若干个NB‑IOT开门监测装置、物联网后台管理系统、NB‑IOT低功耗广域网络和用户访问终端;各个NB‑IOT开门监测装置通过NB‑IOT低功耗广域网络与物联网后台管理系统连接,物联网后台管理系统与用户访问终端连接。 我国以往粮食收储…

Maven依赖传递和依赖冲突以及继承和聚合关系详解

Java全能学习面试指南:https://javaxiaobear.cn 1、Maven依赖传递和依赖冲突 1. Maven依赖传递特性 概念 假如有Maven项目A,项目B依赖A,项目C依赖B。那么我们可以说 C依赖A。也就是说,依赖的关系为:C—>B—>…

Java 算法篇-链表的经典算法:有序链表去重、合并多个有序链表

🔥博客主页: 【小扳_-CSDN博客】 ❤感谢大家点赞👍收藏⭐评论✍ 文章目录 1.0 链表的说明 2.0 有序链表去重的实现方式 2.1 有序链表去重(保留重复的节点) - 使用递归来实现 2.2 有序链表去重(保留重复的节点) - 使用双指针来实现 2.3 有序…

常见面试题-MySQL的Explain执行计划

了解 Explain 执行计划吗? 答: explain 语句可以帮助我们查看查询语句的具体执行计划。 explain 查出来的各列含义如下: id:在一个大的查询语句中,每个 select 关键字都对应一个唯一的 id select_type:…

Android手机投屏神器scrcpy

scrcpy 下装/安装 scrcpy 用于电脑控制 Android 设备的命令行工具 官方下载地址:https://github.com/Genymobile/scrcpy/releases 非官方下载地址 https://download.csdn.net/download/weixin_43335288/88505202 下载后直接解压(免安装) 连…

BUG:编写springboot单元测试,自动注入实体类报空指针异常

原因:修饰测试方法的Test注解导入错误 造成错误的原因是 import org.junit.Test;正确的应该是 import org.junit.jupiter.api.Test前者是Junit4,后者是Junit5 junit4的使用似乎要在测试类除了添加SpringbootTest还要添加RunWith(SpringRunner.class) 同时要注意spring-boot-s…

YOLO对象检测算法也这么卷了吗——基于YOLOv8的人体姿态检测

前期的文章我们介绍了很多关于YOLO系列的对象检测算法,虽然YOLO系列是应用在目标检测算法上,但是最近更新的YOLO系列算法都加入了对象分割,人体姿态检测等模型。 YOLOv8对象检测算法 2023年,Ultralytics再次发布YOLO更新模型,YOLOv8模型。Ultralytics YOLOv8是YOLO对象检…

[算法学习笔记](超全)概率与期望

引子 先来讲个故事 话说在神奇的OI大陆上,有一只paper mouse 有一天,它去商场购物,正好是11.11,商店有活动 它很荣幸被选上给1832抽奖 在抽奖箱里,有3个篮蓝球,12个红球 paper mouse能抽3次 蒟蒻的p…

西南科技大学814考研二

C语言数据结构与算法 线性表 顺序表(静态分配内存) #include <stdio.h> #include <stdbool.h> //静态顺序表 #define MAX_SIZE 8 //顺序表储存的数据类型 typedef int ElemType; typedef struct {ElemType data[MAX_SIZE];int length; }SeqList; //初始化顺序表…

【精选】HTML5最全知识点集合

HTML5简介与基础骨架 HTML5介绍 HTML5是用来描述网页的一种语言&#xff0c;被称为超文本标记语言。用HTML5编写的文件&#xff0c;后缀以.html结尾 HTML是一种标记语言&#xff0c;标记语言是一套标记标签。标签是由尖括号包围的关键字&#xff0c;例如&#xff1a;<html…

关于ASO优化的分步入门指南1

欢迎阅读我们的应用商店优化&#xff08;ASO&#xff09;分步指南&#xff0c;接下来我们将引导大家完成ASO研究的初始步骤&#xff0c;为提高应用程序的知名度和吸引自然下载奠定基础。 1、确定竞争对手。 首先确定应用程序的直接和间接竞争对手。我们可以通过咨询客户或进行…