竞赛 题目:基于大数据的用户画像分析系统 数据分析 开题

news2025/1/9 1:53:06

文章目录

  • 1 前言
  • 2 用户画像分析概述
    • 2.1 用户画像构建的相关技术
    • 2.2 标签体系
    • 2.3 标签优先级
  • 3 实站 - 百货商场用户画像描述与价值分析
    • 3.1 数据格式
    • 3.2 数据预处理
    • 3.3 会员年龄构成
    • 3.4 订单占比 消费画像
    • 3.5 季度偏好画像
    • 3.6 会员用户画像与特征
      • 3.6.1 构建会员用户业务特征标签
      • 3.6.2 会员用户词云分析
  • 4 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于大数据的用户画像分析系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 用户画像分析概述

用户画像是指根据用户的属性、用户偏好、生活习惯、用户行为等信息而抽象出来的标签化用户模型。通俗说就是给用户打标签,而标签是通过对用户信息分析而来的高度精炼的特征标识。通过打标签可以利用一些高度概括、容易理解的特征来描述用户,可以让人更容易理解用户,并且可以方便计算机处理。

标签化就是数据的抽象能力

  • 互联网下半场精细化运营将是长久的主题
  • 用户是根本,也是数据分析的出发点

2.1 用户画像构建的相关技术

我们对构建用户画像的方法进行总结归纳,发现用户画像的构建一般可以分为目标分析、体系构建、画像建立三步。

画像构建中用到的技术有数据统计、机器学习和自然语言处理技术(NLP)等,下如图所示。具体的画像构建方法学长会在后面的部分详细介绍。

在这里插入图片描述

按照数据流处理阶段划分用户画像建模的过程,分为三个层,每一层次,都需要打上不同的标签。

  • 数据层:用户消费行为的标签。打上事实标签,作为数据客观的记录
  • 算法层:透过行为算出的用户建模。打上模型标签,作为用户画像的分类
  • 业务层:指的是获客、粘客、留客的手段。打上预测标签,作为业务关联的结果

2.2 标签体系

目前主流的标签体系都是层次化的,如下图所示。首先标签分为几个大类,每个大类下进行逐层细分。在构建标签时,我们只需要构建最下层的标签,就能够映射到上面两级标签。

上层标签都是抽象的标签集合,一般没有实用意义,只有统计意义。例如我们可以统计有人口属性标签的用户比例,但用户有人口属性标签本身对广告投

在这里插入图片描述

2.3 标签优先级

构建的优先级需要综合考虑业务需求、构建难易程度等,业务需求各有不同,这里介绍的优先级排序方法主要依据构建的难易程度和各类标签的依存关系,优先级如下图所示:

在这里插入图片描述

我们把标签分为三类,这三类标签有较大的差异,构建时用到的技术差别也很大。第一类是人口属性,这一类标签比较稳定,一旦建立很长一段时间基本不用更新,标签体系也比较固定;第二类是兴趣属性,这类标签随时间变化很快,标签有很强的时效性,标签体系也不固定;第三类是地理属性,这一类标签的时效性跨度很大,如GPS轨迹标签需要做到实时更新,而常住地标签一般可以几个月不用更新,挖掘的方法和前面两类也大有不同,如图所示:

在这里插入图片描述

3 实站 - 百货商场用户画像描述与价值分析

3.1 数据格式

在这里插入图片描述

3.2 数据预处理

部分代码

# 作者:丹成学长 Q746876041
import matplotlib
import warnings
import re
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from sklearn.preprocessing import StandardScaler, MinMaxScaler

%matplotlib inline
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False
matplotlib.rcParams.update({'font.size' : 16})
plt.style.use('ggplot')
warnings.filterwarnings('ignore')

df_cum = pd.read_excel('./cumcm2018c1.xlsx')
df_cum
# 先来对会员信息表进行分析
print('会员信息表一共有{}行记录,{}列字段'.format(df_cum.shape[0], df_cum.shape[1]))
print('数据缺失的情况为:\n{}'.format(df_cum.isnull().mean()))
print('会员卡号(不重复)有{}条记录'.format(len(df_cum['会员卡号'].unique())))

# 会员信息表去重
df_cum.drop_duplicates(subset = '会员卡号', inplace = True)
print('会员卡号(去重)有{}条记录'.format(len(df_cum['会员卡号'].unique())))

# 去除登记时间的缺失值,不能直接dropna,因为我们需要保留一定的数据集进行后续的LRFM建模操作
df_cum.dropna(subset = ['登记时间'], inplace = True)
print('df_cum(去重和去缺失)有{}条记录'.format(df_cum.shape[0]))

# 性别上缺失的比例较少,所以下面采用众数填充的方法
df_cum['性别'].fillna(df_cum['性别'].mode().values[0], inplace = True)
df_cum.info()

# 由于出生日期这一列的缺失值过多,且存在较多的异常值,不能贸然删除
# 故下面另建一个数据集L来保存“出生日期”和“性别”信息,方便下面对会员的性别和年龄信息进行统计
L = pd.DataFrame(df_cum.loc[df_cum['出生日期'].notnull(), ['出生日期', '性别']])
L['年龄'] = L['出生日期'].astype(str).apply(lambda x: x[:3] + '0')
L.drop('出生日期', axis = 1, inplace = True)
L['年龄'].value_counts()
...()....

3.3 会员年龄构成

# 使用上述预处理后的数据集L,包含两个字段,分别是“年龄”和“性别”,先画出年龄的条形图
fig, axs = plt.subplots(1, 2, figsize = (16, 7), dpi = 100)
# 绘制条形图
ax = sns.countplot(x = '年龄', data = L, ax = axs[0])
# 设置数字标签
for p in ax.patches:
    height = p.get_height()
    ax.text(x = p.get_x() + (p.get_width() / 2), y = height + 500, s = '{:.0f}'.format(height), ha = 'center')
axs[0].set_title('会员的出生年代')
# 绘制饼图
axs[1].pie(sex_sort, labels = sex_sort.index, wedgeprops = {'width': 0.4}, counterclock = False, autopct = '%.2f%%', pctdistance = 0.8)
axs[1].set_title('会员的男女比例')
plt.savefig('./会员出生年代及男女比例情况.png')

在这里插入图片描述

# 绘制各个年龄段的饼图
plt.figure(figsize = (8, 6), dpi = 100)
plt.pie(res.values, labels = ['中年', '青年', '老年'], autopct = '%.2f%%', pctdistance = 0.8, 
        counterclock = False, wedgeprops = {'width': 0.4})
plt.title('会员的年龄分布')
plt.savefig('./会员的年龄分布.png')

在这里插入图片描述

3.4 订单占比 消费画像

# 由于相同的单据号可能不是同一笔消费,以“消费产生的时间”为分组依据,我们可以知道有多少个不同的消费时间,即消费的订单数
fig, axs = plt.subplots(1, 2, figsize = (12, 7), dpi = 100)
axs[0].pie([len(df1.loc[df1['会员'] == 1, '消费产生的时间'].unique()), len(df1.loc[df1['会员'] == 0, '消费产生的时间'].unique())],
          labels = ['会员', '非会员'], wedgeprops = {'width': 0.4}, counterclock = False, autopct = '%.2f%%', pctdistance = 0.8)
axs[0].set_title('总订单占比')
axs[1].pie([df1.loc[df1['会员'] == 1, '消费金额'].sum(), df1.loc[df1['会员'] == 0, '消费金额'].sum()], 
          labels = ['会员', '非会员'], wedgeprops = {'width': 0.4}, counterclock = False, autopct = '%.2f%%', pctdistance = 0.8)
axs[1].set_title('总消费金额占比')
plt.savefig('./总订单和总消费占比情况.png')

在这里插入图片描述

消费偏好:

我觉得会稍微偏向与消费的频次,相当于消费的订单数,因为每笔消费订单其中所包含的消费商品和金额都是不太一样的,有的订单所消费的商品很少,但金额却很大,有的消费的商品很多,但金额却特别少。如果单纯以总金额来衡量的话,会员下次消费时间可能会很长,消费频次估计也会相对变小(因为这次所购买的商品已经足够用了)。所以我会偏向于认为一个用户消费频次(订单数)越多,就越能带来更多的价值,从另一方面上来讲,用户也不可能一直都是消费低端产品,消费频次越多用户的粘性也会相对比较大

3.5 季度偏好画像

# 前提假设:2015-2018年之间,消费者偏好在时间上不会发生太大的变化(均值),消费偏好——>以不同时间的订单数来衡量
quarters_list, quarters_order = orders(df_vip, '季度', 3)
days_list, days_order = orders(df_vip, '天', 36)
time_list = [quarters_list, days_list]
order_list = [quarters_order, days_order]
maxindex_list = [quarters_order.index(max(quarters_order)), days_order.index(max(days_order))]
fig, axs = plt.subplots(1, 2, figsize = (18, 7), dpi = 100)
colors = np.random.choice(['r', 'g', 'b', 'orange', 'y'], replace = False, size = len(axs))
titles = ['季度的均值消费偏好', '天数的均值消费偏好']
labels = ['季度', '天数']
for i in range(len(axs)):
    ax = axs[i]
    ax.plot(time_list[i], order_list[i], linestyle = '-.', c = colors[i], marker = 'o', alpha = 0.85)
    ax.axvline(x = time_list[i][maxindex_list[i]], linestyle = '--', c = 'k', alpha = 0.8)
    ax.set_title(titles[i])
    ax.set_xlabel(labels[i])
    ax.set_ylabel('均值消费订单数')
    print(f'{titles[i]}最优的时间为: {time_list[i][maxindex_list[i]]}\t 对应的均值消费订单数为: {order_list[i][maxindex_list[i]]}')
plt.savefig('./季度和天数的均值消费偏好情况.png')

在这里插入图片描述

# 自定义函数来绘制不同年份之间的的季度或天数的消费订单差异
def plot_qd(df, label_y, label_m, nrow, ncol):
    """
    df: 为DataFrame的数据集
    label_y: 为年份的字段标签
    label_m: 为标签的一个列表
    n_row: 图的行数
    n_col: 图的列数
    """
    # 必须去掉最后一年的数据,只能对2015-2017之间的数据进行分析
    y_list = np.sort(df[label_y].unique().tolist())[:-1]
    colors = np.random.choice(['r', 'g', 'b', 'orange', 'y', 'k', 'c', 'm'], replace = False, size = len(y_list))
    markers = ['o', '^', 'v']
    plt.figure(figsize = (8, 6), dpi = 100)
    fig, axs = plt.subplots(nrow, ncol, figsize = (16, 7), dpi = 100)
    for k in range(len(label_m)):
        m_list = np.sort(df[label_m[k]].unique().tolist())
        for i in range(len(y_list)):
            order_m = []
            index1 = df[label_y] == y_list[i]
            for j in range(len(m_list)):
                index2 = df[label_m[k]] == m_list[j]
                order_m.append(len(df.loc[index1 & index2, '消费产生的时间'].unique()))
            axs[k].plot(m_list, order_m, linestyle ='-.', c = colors[i], alpha = 0.8, marker = markers[i], label = y_list[i], markersize = 4)
        axs[k].set_xlabel(f'{label_m[k]}')
        axs[k].set_ylabel('消费订单数')
        axs[k].set_title(f'2015-2018年会员的{label_m[k]}消费订单差异')
        axs[k].legend()
    plt.savefig(f'./2015-2018年会员的{"和".join(label_m)}消费订单差异.png')

在这里插入图片描述

# 自定义函数来绘制不同年份之间的月份消费订单差异
def plot_ym(df, label_y, label_m):
    """
    df: 为DataFrame的数据集
    label_y: 为年份的字段标签
    label_m: 为月份的字段标签
    """
    # 必须去掉最后一年的数据,只能对2015-2017之间的数据进行分析
    y_list = np.sort(df[label_y].unique().tolist())[:-1]
    m_list = np.sort(df[label_m].unique().tolist())
    colors = np.random.choice(['r', 'g', 'b', 'orange', 'y'], replace = False, size = len(y_list))
    markers = ['o', '^', 'v']
    fig, axs = plt.subplots(1, 2, figsize = (18, 8), dpi = 100)
    for i in range(len(y_list)):
        order_m = []
        money_m = []
        index1 = df[label_y] == y_list[i]
        for j in range(len(m_list)):
            index2 = df[label_m] == m_list[j]
            order_m.append(len(df.loc[index1 & index2, '消费产生的时间'].unique()))
            money_m.append(df.loc[index1 & index2, '消费金额'].sum())
        axs[0].plot(m_list, order_m, linestyle ='-.', c = colors[i], alpha = 0.8, marker = markers[i], label = y_list[i])
        axs[1].plot(m_list, money_m, linestyle ='-.', c = colors[i], alpha = 0.8, marker = markers[i], label = y_list[i])
        axs[0].set_xlabel('月份')
        axs[0].set_ylabel('消费订单数')
        axs[0].set_title('2015-2018年会员的消费订单差异')
        axs[1].set_xlabel('月份')
        axs[1].set_ylabel('消费金额总数')
        axs[1].set_title('2015-2018年会员的消费金额差异')
        axs[0].legend()
        axs[1].legend()
    plt.savefig('./2015-2018年会员的消费订单和金额差异.png')

在这里插入图片描述

maxindex = order_nums.index(max(order_nums))
plt.figure(figsize = (8, 6), dpi = 100)
plt.plot(x_list, order_nums, linestyle = '-.', marker = 'o', c = 'm', alpha = 0.8)
plt.xlabel('小时')
plt.ylabel('消费订单')
plt.axvline(x = x_list[maxindex], linestyle = '--', c = 'r', alpha = 0.6)
plt.title('2015-2018年各段小时的销售订单数')
plt.savefig('./2015-2018年各段小时的销售订单数.png')

在这里插入图片描述

3.6 会员用户画像与特征

3.6.1 构建会员用户业务特征标签

# 取DataFrame之后转置取values得到一个列表,再绘制对应的词云,可以自定义一个绘制词云的函数,输入参数为df和会员卡号
"""
L: 入会程度(新用户、中等用户、老用户)
R: 最近购买的时间(月)
F: 消费频数(低频、中频、高频)
M: 消费总金额(高消费、中消费、低消费)
P: 积分(高、中、低)
S: 消费时间偏好(凌晨、上午、中午、下午、晚上)
X:性别
"""

# 开始对数据进行分组
"""
L(入会程度):3个月以下为新用户,4-12个月为中等用户,13个月以上为老用户
R(最近购买的时间)
F(消费频次):次数20次以上的为高频消费,6-19次为中频消费,5次以下为低频消费
M(消费金额):10万以上为高等消费,1万-10万为中等消费,1万以下为低等消费
P(消费积分):10万以上为高等积分用户,1万-10万为中等积分用户,1万以下为低等积分用户
"""
df_profile = pd.DataFrame()
df_profile['会员卡号'] = df['id']
df_profile['性别'] = df['X']
df_profile['消费偏好'] = df['S'].apply(lambda x: '您喜欢在' + str(x) + '时间进行消费')
df_profile['入会程度'] = df['L'].apply(lambda x: '老用户' if int(x) >= 13 else '中等用户' if int(x) >= 4 else '新用户')
df_profile['最近购买的时间'] = df['R'].apply(lambda x: '您最近' + str(int(x) * 30) + '天前进行过一次购物')
df_profile['消费频次'] = df['F'].apply(lambda x: '高频消费' if x >= 20 else '中频消费' if x >= 6 else '低频消费')
df_profile['消费金额'] = df['M'].apply(lambda x: '高等消费用户' if int(x) >= 1e+05 else '中等消费用户' if int(x) >= 1e+04 else '低等消费用户')
df_profile['消费积分'] = df['P'].apply(lambda x: '高等积分用户' if int(x) >= 1e+05 else '中等积分用户' if int(x) >= 1e+04 else '低等积分用户')
df_profile

在这里插入图片描述

3.6.2 会员用户词云分析

# 开始绘制用户词云,封装成一个函数来直接显示词云
def wc_plot(df, id_label = None):
    """
    df: 为DataFrame的数据集
    id_label: 为输入用户的会员卡号,默认为随机取一个会员进行展示
    """
    myfont = 'C:/Windows/Fonts/simkai.ttf'
    if id_label == None:
        id_label = df.loc[np.random.choice(range(df.shape[0])), '会员卡号']
    text = df[df['会员卡号'] == id_label].T.iloc[:, 0].values.tolist()
    plt.figure(dpi = 100)
    wc = WordCloud(font_path = myfont, background_color = 'white', width = 500, height = 400).generate_from_text(' '.join(text))
    plt.imshow(wc)
    plt.axis('off')
    plt.savefig(f'./会员卡号为{id_label}的用户画像.png')
    plt.show()

在这里插入图片描述
在这里插入图片描述

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1222206.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一文了解ChatGPT Plus如何完成论文写作和AI绘图

2023年我们进入了AI2.0时代。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义,不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车,就有可能被淘汰在这个数字化时代,如何能高效地处理文本、文献查阅、PPT…

SSL证书哪个品牌最好用?

现在市面上的SSL证书品牌有很多,选购SSL证书时有很多人并不是很清楚,因此有很多伙伴对于选择哪个SSL证书品牌而感到疑惑。今天JoySSL小编就专门介绍下哪些比较好用的SSL证书品牌。 SSL证书兼容性主要包含操作系统、浏览器、服务器三个方面,好…

SpringBoot-过滤器Filter+JWT令牌实现登录验证

登录校验-Filter 分析 过滤器Filter的快速入门以及使用细节我们已经介绍完了,接下来最后一步,我们需要使用过滤器Filter来完成案例当中的登录校验功能。 我们先来回顾下前面分析过的登录校验的基本流程: 要进入到后台管理系统,我…

windows Oracle Database 19c 卸载教程

目录 打开任务管理器 停止数据库服务 Universal Installer 卸载Oracle数据库程序 使用Oracle Installer卸载 删除注册表项 重新启动系统 打开任务管理器 ctrlShiftEsc可以快速打开任务管理器,找到oracle所有服务然后停止。 停止数据库服务 在开始卸载之前&a…

数据库大事记

数据库分类分类方法为:按数据模型分类、按业务类型分类、按部署方式分类、按存储介质分类。 按数据模型分类 按业务类型分类 按部署方式分类 按存储介质分类 喜欢点赞收藏,下期再见。

torch - 张量Tensor简介与创建

张量是什么? 张量就是多维数组,0维张量叫标量,1维张量是向量,2维张量是矩阵,灰度图片大多都使用2维张量所表示的,3维张量一般用于RGB图片的表示。 张量的属性 其中后四个是用于Tensor自动求导。前四个和T…

什么是CDN?什么是安全加速CDN?有什么优势?

安全加速CDN(Content Delivery Network)是一种网络架构,它通过在全球范围内部署服务器并缓存静态和动态内容来提供更快的Web页面加载和更好的用户体验。安全加速CDN可以保护网站免受DDoS攻击、恶意软件和其他安全威胁,从而提高网站的可用性和稳定性。它通…

一个美观且功能丰富的 .NET 控制台应用程序开源库

推荐一个美观且功能丰富的 .NET 控制台应用程序开源库,从此告别黑漆漆的界面。 01 项目简介 Spectre.Console 是一个开源的 .NET 库,用于创建美观、功能丰富的控制台(命令行)应用程序。它提供了一组易于使用的 API,…

在QGIS中加载显示3DTiles数据

“我们最近有机会在QGIS 3.34中实现一个非常令人兴奋的功能–能够以“Cesium 3D Tiles”格式加载和查看3D内容!” ——QGIS官方的 宣传介绍。 体验一下,感觉就是如芒刺背、如坐针毡、如鲠在喉。 除非我电脑硬件有问题,要么QGIS的3Dtiles是真…

《网络协议》08. 概念补充

title: 《网络协议》08. 概念补充 date: 2022-10-06 18:33:04 updated: 2023-11-17 10:35:52 categories: 学习记录:网络协议 excerpt: 代理、VPN、CDN、网络爬虫、无线网络、缓存、Cookie & Session、RESTful。 comments: false tags: top_image: /images/back…

阿里云服务器 手动搭建WordPress(CentOS 8)

前提条件 已创建Linux操作系统的ECS实例,并且手动部署LNMP环境,具体操作,请参见手动部署LNMP环境(CentOS 8)。本教程使用的相关资源版本如下。 实例规格:ecs.c6.large 操作系统:公共镜像CentO…

2023年软件安装管家目录最新

软件目录 ①【电脑办公】电脑系统(直接安装)Win7Win8Win10OfficeOffice激活office2003office2007office2010office2013office2016office2019office365office2021wps2021Projectproject2007project2010project2016project2019project2013project2021Visio…

html使用天地图写一个地图列表

一、效果图&#xff1a; 点击左侧地址列表&#xff0c;右侧地图跟着改变。 二、代码实现&#xff1a; 一进入页面时&#xff0c;通过body调用onLoad"onLoad()"函数&#xff0c;确保地图正常显示。 <body onLoad"onLoad()"><!--左侧代码-->…

Libvirt-Qemu-Kvm 操作手记

(持续更新~) 本文主要用于记录在操作libvirt qemu kvm过程中遇到的问题及原因分析。 Hugepage 让qemu使用大页可以减少tdp的size&#xff0c;一定程度上可以提高性能&#xff1b;使用大页可以用memfd或者file backend。 memfd 操作步骤如下&#xff1a; 在系统中reserv…

【0235】修改私有内存(private memory)中的MyBEEntry时,st_changecount值前后变化

上一篇: 【0234】PgBackendStatus 记录当前postgres进程的活动状态 1. pg_stat_activity中xxx实时信息如何实现? 客户端(eg:psql)在连接上postmaster之后,postmaster守护进程会fork()一个后端进场(backend process),之后此客户端的所有操作、交互均有此对应的Backen…

mac苹果笔记本应用程序在哪?有什么快捷方式吗?

苹果笔记本电脑一直以来都被广泛使用&#xff0c;而苹果的操作系统 macOS 也非常受欢迎。一台好的笔记本电脑不仅仅依赖于硬件配置&#xff0c;还需要丰富多样的应用程序来满足用户的需求。苹果笔记本应用程序在哪&#xff0c;不少mac新手用户会有这个疑问。在这篇文章中&#…

使用 PPO 算法进行 RLHF 的 N 步实现细节

当下&#xff0c;RLHF/ChatGPT 已经变成了一个非常流行的话题。我们正在致力于更多有关 RLHF 的研究&#xff0c;这篇博客尝试复现 OpenAI 在 2019 年开源的原始 RLHF 代码库&#xff0c;其仓库位置位于 openai/lm-human-preferences。尽管它具有 “tensorflow-1.x” 的特性&am…

GPS信号的数字接收处理matlab仿真,包括频率点搜索,捕获跟踪,相关峰检测等步骤

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1. 频率点搜索 4.2. 捕获跟踪 4.3. 相关峰检测 5.算法完整程序工程 1.算法运行效果图预览 低信噪比下仿真结果如下&#xff1a; 2.算法运行软件版本 matlab2022a 3.部分核心程序 ...…

STM32踩坑:LAN8720未接网线,上电后再接网线,网络模块无法正常使用

LAN8720未接网线&#xff0c;上电后再接网线&#xff0c;网络模块无法正常使用 一、问题描述 最近因为做的项目出了BUG&#xff0c;STM32 单片机在未接网线的状态下&#xff0c;上电一段时间后&#xff0c;将网线插入网口后&#xff0c;IP地址ping不通&#xff0c;网络模块无…

C++语言的由来与发展历程

C语言的由来与发展历程可以追溯到1978年&#xff0c;当时美国电话电报公司&#xff08;AT&T&#xff09;的贝尔实验室发明了C语言&#xff0c;以满足UNIX操作系统的开发需求。在C语言的基础上&#xff0c;Bjarne Stroustrup于1983年创立了C编程语言&#xff0c;作为C语言的…