说明
装饰器是Python中非常有用的工具,它们可以用于修改或扩展函数或类的行为,而无需修改其原始定义。装饰器通常是一个函数,它接受一个函数作为参数,并返回一个新的函数或类。下面我们将介绍一些常见的装饰器用途和示例。
- 记录日志
装饰器可以用于记录函数的调用信息,比如函数的名称、参数和返回值等。这对于调试和性能分析非常有用。以下是一个简单的记录日志的装饰器示例:
python
复制代码
def logger(func):
def wrapper(*args, **kwargs):
print(f"Calling function: {func.__name__}")
result = func(*args, **kwargs)
print(f"Function {func.__name__} returned: {result}")
return result
return wrapper
@logger
def add(a, b):
return a + b
result = add(2, 3) # 输出:Calling function: add
# Function add returned: 5
- 输入验证
装饰器可以用于验证函数的输入参数是否符合要求,如果不符合,则抛出异常或进行其他处理。以下是一个简单的输入验证装饰器示例:
python
复制代码
def validate_input(func):
def wrapper(*args, **kwargs):
for arg in args:
if not isinstance(arg, int):
raise ValueError("Invalid input: integers required")
for value in kwargs.values():
if not isinstance(value, int):
raise ValueError("Invalid input: integers required")
return func(*args, **kwargs)
return wrapper
@validate_input
def multiply(a, b):
return a * b
result = multiply(2, 3) # 返回:6
result = multiply(2, "3") # 抛出异常:ValueError: Invalid input: integers required
- 缓存结果
装饰器可以用于缓存函数的计算结果,避免重复计算,提高执行效率。以下是一个简单的缓存结果装饰器示例:
less
复制代码
import functools
def memoize(func):
cache = {}
@functools.wraps(func)
def wrapper(*args, **kwargs):
key = args + tuple(sorted(kwargs.items()))
if key not in cache:
cache[key] = func(*args, **kwargs)
return cache[key]
return wrapper
@memoize
def fibonacci(n):
if n < 2:
return n
return fibonacci(n-1) + fibonacci(n-2)
result = fibonacci(50) # 返回:12586269025
- 权限检查
装饰器可以用于检查用户权限,确保只有具有特定权限的用户才能调用某些函数。这在Web应用程序中特别有用,可以帮助确保用户只能访问其具有权限的资源。以下是一个简单的权限检查装饰器示例:
python
复制代码
def check_permission(func):
def wrapper(*args, **kwargs):
if user_has_permission():
return func(*args, **kwargs)
else:
raise PermissionError("User does not have permission to access this resource")
return wrapper
@check_permission
def delete_file(file_path):
# 删除文件的代码
pass
- 性能分析
装饰器可以用于对函数的性能进行分析,比如计算函数的执行时间、调用次数等信息。这对于优化程序性能非常有帮助,可以帮助开发人员找到程序的瓶颈所在。以下是一个简单的性能分析装饰器示例:
python
复制代码
import time
def profile_performance(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"Function {func.__name__} took {end_time - start_time} seconds to execute")
return result
return wrapper
@profile_performance
def heavy_computation():
# 执行耗时计算的代码
pass
总结
通过上述示例,我们可以看到装饰器的强大功能。它们可以帮助我们轻松地修改和扩展函数或类的行为,而无需对其进行直接修改。装饰器在Python中被广泛使用,因为它们使代码更加模块化、可复用和易于维护。希望本文能够帮助大家理解装饰器的用途和实例,并在实际项目中灵活运用它们。
题外话
在此疾速成长的科技元年,编程就像是许多人通往无限可能世界的门票。而在编程语言的明星阵容中,Python就像是那位独领风 骚的超级巨星, 以其简洁易懂的语法和强大的功能,脱颖而出,成为全球最炙手可热的编程语言之一。
Python 的迅速崛起对整个行业来说都是极其有利的 ,但“人红是非多
”,导致它平添了许许多多的批评,不过依旧挡不住它火爆的发展势头。
如果你对Python感兴趣,想要学习pyhton,这里给大家分享一份Python全套学习资料,都是我自己学习时整理的,希望可以帮到你,一起加油!
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
👉CSDN大礼包🎁:全网最全《Python学习资料》免费分享(安全链接,放心点击)👈
1️⃣零基础入门
① 学习路线
对于从来没有接触过Python的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
② 路线对应学习视频
还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~
③练习题
每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
2️⃣国内外Python书籍、文档
① 文档和书籍资料
3️⃣Python工具包+项目源码合集
①Python工具包
学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
②Python实战案例
光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
③Python小游戏源码
如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
4️⃣Python面试题
我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
5️⃣Python兼职渠道
而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。
上述所有资料 ⚡️ ,朋友们如果有需要的,可以扫描下方👇👇👇二维码免费领取🆓