文章目录
- 前期工作
- 1. 设置GPU(如果使用的是CPU可以忽略这步)
- 我的环境:
- 2. 导入数据
- 3.归一化
- 4.可视化
- 5.调整图片格式
- 二、构建CNN网络模型
- 三、编译模型
- 四、训练模型
- 五、预测
- 六、知识点详解
- 1. MNIST手写数字数据集介绍
- 2. 神经网络程序说明
- 3. 网络结构说明
前期工作
1. 设置GPU(如果使用的是CPU可以忽略这步)
我的环境:
- 语言环境:Python3.6.5
- 编译器:jupyter notebook
- 深度学习环境:TensorFlow2.4.1
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
tf.config.set_visible_devices([gpu0],"GPU")
2. 导入数据
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()
3.归一化
# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0, test_images / 255.0
train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
4.可视化
plt.figure(figsize=(20,10))
for i in range(20):
plt.subplot(5,10,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i], cmap=plt.cm.binary)
plt.xlabel(train_labels[i])
plt.show()
5.调整图片格式
#调整数据到我们需要的格式
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))
# train_images, test_images = train_images / 255.0, test_images / 255.0
train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
二、构建CNN网络模型
model = models.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Flatten(),
layers.Dense(64, activation='relu'),
layers.Dense(10)
])
model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 26, 26, 32) 320
max_pooling2d (MaxPooling2D (None, 13, 13, 32) 0
)
conv2d_1 (Conv2D) (None, 11, 11, 64) 18496
max_pooling2d_1 (MaxPooling (None, 5, 5, 64) 0
2D)
flatten (Flatten) (None, 1600) 0
dense (Dense) (None, 64) 102464
dense_1 (Dense) (None, 10) 650
=================================================================
Total params: 121,930
Trainable params: 121,930
Non-trainable params: 0
_________________________________________________________________
三、编译模型
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
四、训练模型
history = model.fit(train_images, train_labels, epochs=10,
validation_data=(test_images, test_labels))
Epoch 1/10
1875/1875 [==============================] - 15s 8ms/step - loss: 0.1429 - accuracy: 0.9562 - val_loss: 0.0550 - val_accuracy: 0.9803
Epoch 2/10
1875/1875 [==============================] - 14s 7ms/step - loss: 0.0460 - accuracy: 0.9856 - val_loss: 0.0352 - val_accuracy: 0.9883
Epoch 3/10
1875/1875 [==============================] - 13s 7ms/step - loss: 0.0312 - accuracy: 0.9904 - val_loss: 0.0371 - val_accuracy: 0.9880
Epoch 4/10
1875/1875 [==============================] - 14s 7ms/step - loss: 0.0234 - accuracy: 0.9925 - val_loss: 0.0330 - val_accuracy: 0.9900
Epoch 5/10
1875/1875 [==============================] - 14s 8ms/step - loss: 0.0176 - accuracy: 0.9944 - val_loss: 0.0311 - val_accuracy: 0.9904
Epoch 6/10
1875/1875 [==============================] - 16s 9ms/step - loss: 0.0136 - accuracy: 0.9954 - val_loss: 0.0300 - val_accuracy: 0.9911
Epoch 7/10
1875/1875 [==============================] - 14s 8ms/step - loss: 0.0109 - accuracy: 0.9964 - val_loss: 0.0328 - val_accuracy: 0.9909
Epoch 8/10
1875/1875 [==============================] - 14s 7ms/step - loss: 0.0097 - accuracy: 0.9969 - val_loss: 0.0340 - val_accuracy: 0.9903
Epoch 9/10
1875/1875 [==============================] - 15s 8ms/step - loss: 0.0078 - accuracy: 0.9974 - val_loss: 0.0499 - val_accuracy: 0.9879
Epoch 10/10
1875/1875 [==============================] - 13s 7ms/step - loss: 0.0078 - accuracy: 0.9976 - val_loss: 0.0350 - val_accuracy: 0.9902
五、预测
通过下面的网络结构我们可以简单理解为,输入一张图片,将会得到一组数,这组代表这张图片上的数字为0~9中每一个数字的几率,out数字越大可能性越大。
plt.imshow(test_images[1])
输出测试集中第一张图片的预测结果
pre = model.predict(test_images)
pre[1]
313/313 [==============================] - 1s 2ms/step
array([ 3.3290668 , 0.29532072, 21.943724 , -7.09336 ,
-15.3133955 , -28.765621 , -1.8459738 , -5.761892 ,
-2.966585 , -19.222878 ], dtype=float32)
六、知识点详解
本文使用的是最简单的CNN模型- -LeNet-5,如果是第一次接触深度学习的话,可以先试着把代码跑通,然后再尝试去理解其中的代码。
1. MNIST手写数字数据集介绍
MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一。数据集中的数字图片是由250个不同职业的人纯手写绘制,数据集获取的网址为:http://yann.lecun.com/exdb/mnist/ (下载后需解压)。我们一般会采用(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()
这行代码直接调用,这样就比较简单
MNIST手写数字数据集中包含了70000张图片,其中60000张为训练数据,10000为测试数据,70000张图片均是28*28
,数据集样本如下:
如果我们把每一张图片中的像素转换为向量,则得到长度为28*28=784
的向量。因此我们可以把训练集看成是一个[60000,784]
的张量,第一个维度表示图片的索引,第二个维度表示每张图片中的像素点。而图片里的每个像素点的值介于0-1
之间。
2. 神经网络程序说明
神经网络程序可以简单概括如下:
3. 网络结构说明
各层的作用
- 输入层:用于将数据输入到训练网络
- 卷积层:使用卷积核提取图片特征
- 池化层:进行下采样,用更高层的抽象表示图像特征
- Flatten层:将多维的输入一维化,常用在卷积层到全连接层的过渡
- 全连接层:起到“特征提取器”的作用