生成对抗网络Generative Adversarial Network,GAN

news2024/11/28 0:40:01

Basic Idea of GAN

  • Generation(生成器)

   Generation是一个neural network,它的输入是一个vector,它的输出是一个更高维的vector,以图片生成为例,输出就是一张图片,其中每个维度的值代表生成图片的某种特征。

  • Discriminator(判别器)

   Discriminator也是一个neural network,它的输入是一张图片,输出是一个scalar,scalar的数值越大说明这张图片越像真实的图片。

  • Generation和Discriminator两者的关系

举了鸟和蝴蝶例子说明Generation和Discriminator之间的关系是相互对抗,相互提高。然后提出两个问题:

  1. Generator为什么不自己学,还需要Discriminator来指导。
  2. Discriminator为什么不自己直接做。

Algorithm(算法说明)

首先要随机初始化generator 、discriminator的参数;

然后在每一个training iteration要做两件事:

(1)固定generator的参数,然后只训练discriminator。

将generator生成的图片与从database sample出来的图片放入discriminator中训练,如果是generator生成的图片就给低分,从database sample出来的图片就给高分。

(2)固定discriminator的参数,然后只训练generator。

把generator生成的图片当做discriminator的输入,训练目标是让输出越大越好。

具体算法如下:

训练D(固定G):

  1. 首先从database中抽取m个样本。
  2. 从一个分布中抽取m个vector z。
  3. 将z输入generator,生成m张图片x
  4. 计算损失,最大化损失。

训练G(固定D):

  1. 随机产生m个噪声,通过generator得到图片G(z);
  2. 然后经过discriminator得到D(G(z)),更改G中的参数,使得它的得分越高越好。

GAN as structured learning

结构化学习的输入和输出多种多样,可以是序列(sequence)到序列,序列到矩阵(matrix),矩阵到图(graph),图到树(tree)等。例如,机器翻译、语音识别、聊天机器人、文本转图像等。GAN也是结构化学习的一种。

  • Structured Learning面临的挑战
  1. One-shot/Zero-shot Learning:比如在分类任务中,有些类别没有数据或者有很少的数据。
  2. 机器需要创造新的东西。如果把每个可能的输出都视为一个“class”,由于输出空间很大,大多数“class”都没有训练数据,也,这就导致了机器必须在testing时创造新的东西。
  3. 机器需要有规划的概念,要有大局观。因为输出组件具有依赖性,所以应全局考虑它们。
  • Structured Learning Approach

传统的structured learning主要有两种做法:Bottom up 和 Top down。

Bottom up:机器逐个产生object的component。

Top down:从整体来评价产生的component的好坏。

Generator可以视为是一个Bottom Up的方法,discriminator可以视为是一个Top Down的方法,把这两个方法结合起来就是GAN。

Can Generator learn by itself

可以用监督学习的方法来对generator进行训练,但是还会存在一个问题:表示图片的code从哪里来。如果随机产生,训练起来可能非常困难。因为如果两种图片很像,它们输入vector差异很大的话,就很难去训练。

可以通过训练一个encoder,得到相应的code。但是存在的问题就是:Vector a 输出结果是向左的1,vector b 输出结果是向右的1。若把a、b平均作为输入,则输出不一定是数字,可以使用VAE来解决这个问题。

  • VAE (Variational Auto-Encoder,变分编码器)

VAE不仅产生一个code还会产生每一个维度的方差;然后将方差和正态分布中抽取的噪声进行相乘,之后加上code上去,就相当于加上noise的code。

  • VAE的缺陷

在生成图片时,不是单纯的让生成结果与真实结果越接近越好,还要保证整幅图片符合现实规律。

假设Layer L-1的值是给定的,则Layer L每一个dimension的输出都是独立的,无法相互影响。因此只有在L后面在加几个隐藏层,才可以调整第L层的神经元输出。也就是说,VAE要想获得GAN的效果,它的网络要比GAN要深才行。

下图中绿色是目标,蓝色是VAE学习的结果。VAE在做一些离散的目标效果不好。

Can Discriminator generate

Discriminator就是给定一个输入,输出一个分数。对discriminator来说,要考虑component和component之间的联系就比较容易。比如有一个滤波器,它会去检索有没有独立的像素点,有的话就是低分。

假如有一个discriminator,它能够鉴别图片的好坏,就可以用这个discriminator去生成图片。穷举所有的输入x,比较discriminator给出的分数,找到分数最高的就是discriminator的生成结果。

  • 训练discriminator
  1. 首先给定一些正样本,随机产生一些负样本。
  2. 在每一个iteration里面,训练出discriminator能够鉴别正负样本。
  3. 然后用训练出来的discriminator生成图片当做负样本。
  4. 开始迭代。

从可视化和概率的角度来看一下整个过程。蓝色的是discriminator生成图片的分布,绿色的是真实图片分布。训练discriminator给绿色的高分,蓝色的低分。然后寻找discriminator除了真实图片之外,得分最大高的地方把它变成负样反复迭代,最终正样本和负样本就会重合在一起。

  • Generator v.s. Discriminator

generator:很容易生成图片,但是它不考虑component之间的联系。只学到了目标的表象,没有学到精神。

Discriminator:能够考虑大局,但是很难生成图片。

  • Generator + Discriminator

Generator就是取代了这个argmax的过程。GAN的优点如下:

从discriminator来看,利用generator去生成样本,去求解argmax问题,更加有效。

从generator来看,虽然在生成图片过程中的像素之间依然没有联系,但是它的图片好坏是由有大局观的discriminator来判断的。从而能够学到有大局观的generator。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1218767.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

中级程序员——uniapp和小程序面试题

😄博主:小猫娃来啦 😄文章核心:uniapp和小程序面试题 文章目录 用uniapp有遇到一些兼容性问题吗?uniapp最大的优点是什么?uniapp如何实现多端兼容?uniapp是如何做跨端适配的?常用的u…

lxml基本使用

lxml是python的一个解析库,支持HTML和XML的解析,支持XPath解析方式,而且解析效率非常高 XPath,全称XML Path Language,即XML路径语言,它是一门在XML文档中查找信息的语言,它最初是用来搜寻XML文…

打造智算中心新标杆,普洛斯数据中心荣获“2023年数据中心科技成果奖”一等奖

11月15-16日,由CDCC主办的2023第十一届数据中心标准大会在北京举行,大会同期举行“2023年数据中心科技成果奖”颁奖典礼。会上,普洛斯数据中心及美团联合申报的“智能算力中心弹性高效节能技术”荣获“2023年数据中心科技成果奖一…

数据服务化在京东平台API接口接入的实践

数据服务化在京东的实践 导读 本次分享的主题为数据服务化在京东的实践,主要包含三个模块:数据服务化的缘起、成长、如何将系统做得更好。 01 缘起:数据服务化从 0 到 1 1. 缘起 京东数据智能部负责维护数据资产和对外提供数据服务&#…

类BERT模型蒸馏原理

如果你曾经训练过 BERT 或 RoBERTa 等大型 NLP 模型,就就会知道这个过程非常漫长。 由于此类模型规模庞大,训练可能会持续数天。 当需要在小型设备上运行它们时,可能会发现你正在为当今不断提高的性能付出巨大的内存和时间成本。 幸运的是&a…

单片机语音芯片在工业控制中的应用优势

单片机语音芯片,这一智能化的代表产品,不仅在家庭和消费电子领域发挥着重要的作用,更为工业控制领域注入了新的活力。将单片机语音芯片与语音交互技术相结合,为工业设备的控制和监测提供了前所未有的解决方案。 首先,…

【Hello Go】Go语言运算符

Go语言运算符 算术运算符关系运算符逻辑运算符位运算符赋值运算符其他运算符运算符优先级 算术运算符 如果之前没有其他语言基础的小伙伴可以参考下我之前写的C语言运算符讲解 这里主要讲解下Go和C运算符的不同点 – 运算符 Go语言中只有后置 和后置– var a int 5a--fmt.P…

宏集干货 | 手把手教你通过CODESYS V3进行PLC编程(三)

来源:宏集科技 工业物联网 宏集干货 | 手把手教你通过CODESYS V3进行PLC编程(三) 教程背景 通过之前的教程,我们已经为大家演示了宏集MC-Prime控制器的连接、试运行和CODESYS的安装,并创建了一个计数器项目。在本期教…

小型内衣洗衣机什么牌子好?性价比高的迷你洗衣机推荐

现在洗内衣内裤也是一件较麻烦的事情了,在清洗过程中还要用热水杀菌,还要确保洗衣液是否有冲洗干净,还要防止细菌的滋生等等,所以入手一款小型的烘洗全套的内衣洗衣机是非常有必要的,专门的内衣洗衣机可以最大程度减少…

用护眼灯到底好不好?适合小学生用的五款护眼台灯推荐

如果不想家里的孩子年纪小小的就戴着眼镜,从小就容易近视,那么护眼灯的选择就非常重要了,但是市场上那么多品类,价格也参差不齐,到底怎么选呢?大家一定要看完本期内容。为大家推荐五款护眼台灯。 一、书客护…

几种典型的深度学习算法:(CNN、RNN、GANS、RL)

以下是几种典型的深度学习算法: 1、卷积神经网络(Convolutional Neural Network,CNN):主要用于图像和视频等视觉任务。通过使用卷积层、池化层和全连接层等不同类型的神经网络层,CNN 可以学习图像中的特征并…

Apache DolphinScheduler在通信行业的多集群统一建设与管理实践

背景介绍 为什么我们考虑构建统一的调度平台? 主要原因是:我们公司的大数据中心目前拥有七个大数据集群,这些集群分布在不同的机房,例如内蒙、南京、苏州和广州。而且,这些机房之间的网络并不互通。如果每个集群都独立…

校园跑腿小程序源码系统+多校园版+取快递+食堂超市跑腿+外卖 带完整的搭建教程

大家好啊,又到了罗峰给大家分享源码的时间啦。今天要给大家分享的是一款校园跑腿小程序源码系统。这款系统功能十分强大,开发了多校园版。众所周知,校园跑腿的发展是从外卖配送一点点演变过来的,而校园跑腿的基础性服务项目就是帮…

智慧城市安全监控的新利器

在传统的城市管理中,井盖的监控一直是一个难题,而井盖异动传感器的出现为这一问题提供了有效的解决方案。它具有体积小、重量轻、安装方便等特点,可以灵活地应用于各种类型的井盖,实现对城市基础设施的全方位监控。 智能井盖监测终…

如何创建react项目

可以直接通过react脚手架进行创建 首先确保自己是否安装了create-react-app npm install -g create-react-app 如果安装不成功有可能是有缓存,可以先清除缓存再重新安装 npm cache clean --force 安装成功后就可以使用脚手架创建自己的项目,my-react就是我的项…

求臻医学:当MRD遇到肺癌 见招拆招,斩草除根

当MRD遇到肺癌→见招拆招,斩草除根 浅谈MRD在肺癌中的应用 新辅助治疗后,可以通过MRD来辅助评估预后,一般MRD阴性与新辅助治疗后的pCR (病理完全缓解)相关,达到MRD阴性或pCR的惠者预后更好. MRD在肺癌中可潜在解决的问题点1.术…

成都瀚网科技有限公司抖音带货是否靠谱

成都瀚网科技有限公司,作为一家专业的科技公司,近年来积极参与了抖音带货的浪潮,凭借其出色的产品和服务,赢得了广大用户的信赖。 在当今的数字化时代,抖音带货已经成为了一种非常流行的购物方式。消费者可以通过抖音平…

Linux中的进程等待(超详细)

Linux中的进程等待 1. 进程等待必要性2. 进程等待的方法2.1 wait方法2.2 waitpid方法 3. 获取子进程status4. 具体代码实现 1. 进程等待必要性 我们知道,子进程退出,父进程如果不管不顾,就可能造成‘僵尸进程’的问题,进而造成内…

抖音自动评论助手,其开发流程与需要的技术和代码分享

先来看实操成果,↑↑需要的同学可看我名字↖↖↖↖↖,或评论888无偿分享 在当今这个信息爆炸的时代,我们不难发现,无论是在线上还是线下,我们都无法忽视一个重要的信息传播工具——抖音。这款短视频平台以其强大的传播…

为什么选择CodeEase?

目录 为什么选择CodeEase核心功能后端前端 框架结构总结 为什么选择CodeEase CodeEase是一个标准化的低代码平台 愿景 我们励志开发一站式服务,缩短网站开发周期,降低程序bug率,减少开发人力和成本,推出了多租户SaaS平台开发模板…