String字符串性能优化的几种方案

news2024/11/29 0:55:20

原创/朱季谦

String字符串是系统里最常用的类型之一,在系统中占据了很大的内存,因此,高效地使用字符串,对系统的性能有较好的提升。

针对字符串的优化,我在工作与学习过程总结了以下三种方案作分享:

一.优化构建的超大字符串

  验证环境:jdk1.8

  反编译工具:jad

1.下载反编译工具jad,百度云盘下载:

链接:https://pan.baidu.com/s/1TK1_N769NqtDtLn28jR-Xg

提取码:ilil

2.验证

先执行一段例子1代码:

1 public class test3 {
2     public static void main(String[] args) {
3         String str="ab"+"cd"+"ef"+"123";
4     }
5 }

执行完成后,用反编译工具jad进行反编译:jad -o -a -s d.java test.class反编译后的代码:

 1 // Decompiled by Jad v1.5.8g. Copyright 2001 Pavel Kouznetsov.
 2 // Jad home page: http://www.kpdus.com/jad.html
 3 // Decompiler options: packimports(3) annotate 
 4 // Source File Name:   test.java
 5 package example;
 6 public class test
 7 {
 8     public test()
 9     {
10     //    0    0:aload_0         
11     //    1    1:invokespecial   #1   <Method void Object()>
12     //    2    4:return          
13     }
14     public static void main(String args[])
15     {
16         String str = "abcdef123";
17     //    0    0:ldc1            #2   <String "abcdef123">
18     //    1    2:astore_1        
19     //    2    3:return          
20     }
21 }

案例2:

1 public class test1 {
2     public static void main(String[] args)
3     {
4         String s = "abc";
5         String ss = "ok" + s + "xyz" + 5;
6         System.out.println(ss);
7     }
8 }

用反编译工具jad执行jad -o -a -s d.java test1.class进行反编译后:

 1 // Decompiled by Jad v1.5.8g. Copyright 2001 Pavel Kouznetsov.
 2 // Jad home page: http://www.kpdus.com/jad.html
 3 // Decompiler options: packimports(3) annotate 
 4 // Source File Name:   test1.java
 5 
 6 package example;
 7 
 8 import java.io.PrintStream;
 9 
10 public class test1
11 {
12     public test1()
13     {
14     //    0    0:aload_0         
15     //    1    1:invokespecial   #1   <Method void Object()>
16     //    2    4:return          
17     }
18     public static void main(String args[])
19     {
20         String s = "abc";
21     //    0    0:ldc1            #2   <String "abc">
22     //    1    2:astore_1        
23         String ss = (new StringBuilder()).append("ok").append(s).append("xyz").append(5).toString();
24     //    2    3:new             #3   <Class StringBuilder>
25     //    3    6:dup             
26     //    4    7:invokespecial   #4   <Method void StringBuilder()>
27     //    5   10:ldc1            #5   <String "ok">
28     //    6   12:invokevirtual   #6   <Method StringBuilder StringBuilder.append(String)>
29     //    7   15:aload_1         
30     //    8   16:invokevirtual   #6   <Method StringBuilder StringBuilder.append(String)>
31     //    9   19:ldc1            #7   <String "xyz">
32     //   10   21:invokevirtual   #6   <Method StringBuilder StringBuilder.append(String)>
33     //   11   24:iconst_5        
34     //   12   25:invokevirtual   #8   <Method StringBuilder StringBuilder.append(int)>
35     //   13   28:invokevirtual   #9   <Method String StringBuilder.toString()>
36     //   14   31:astore_2        
37         System.out.println(ss);
38     //   15   32:getstatic       #10  <Field PrintStream System.out>
39     //   16   35:aload_2         
40     //   17   36:invokevirtual   #11  <Method void PrintStream.println(String)>
41     //   18   39:return          
42     }
43 }

根据反编译结果,可以看到内部其实是通过StringBuilder进行字符串拼接的。

再来执行例3的代码:

 1 public class test2 {
 2     public static void main(String[] args) {
 3         String s = "";
 4         Random rand = new Random();
 5         for (int i = 0; i < 10; i++) {
 6             s = s + rand.nextInt(1000) + " ";
 7         }
 8         System.out.println(s);
 9     }
10 }

用反编译工具jad执行jad -o -a -s d.java test2.class进行反编译后,发现其内部同样是通过StringBuilder来进行拼接的:

 1 // Decompiled by Jad v1.5.8g. Copyright 2001 Pavel Kouznetsov.
 2 // Jad home page: http://www.kpdus.com/jad.html
 3 // Decompiler options: packimports(3) annotate 
 4 // Source File Name:   test2.java
 5 package example;
 6 import java.io.PrintStream;
 7 import java.util.Random;
 8 public class test2
 9 {
10     public test2()
11     {
12     //    0    0:aload_0         
13     //    1    1:invokespecial   #1   <Method void Object()>
14     //    2    4:return          
15     }
16     public static void main(String args[])
17     {
18         String s = "";
19     //    0    0:ldc1            #2   <String "">
20     //    1    2:astore_1        
21         Random rand = new Random();
22     //    2    3:new             #3   <Class Random>
23     //    3    6:dup             
24     //    4    7:invokespecial   #4   <Method void Random()>
25     //    5   10:astore_2        
26         for(int i = 0; i < 10; i++)
27     //*   6   11:iconst_0        
28     //*   7   12:istore_3        
29     //*   8   13:iload_3         
30     //*   9   14:bipush          10
31     //*  10   16:icmpge          55
32             s = (new StringBuilder()).append(s).append(rand.nextInt(1000)).append(" ").toString();
33     //   11   19:new             #5   <Class StringBuilder>
34     //   12   22:dup             
35     //   13   23:invokespecial   #6   <Method void StringBuilder()>
36     //   14   26:aload_1         
37     //   15   27:invokevirtual   #7   <Method StringBuilder StringBuilder.append(String)>
38     //   16   30:aload_2         
39     //   17   31:sipush          1000
40     //   18   34:invokevirtual   #8   <Method int Random.nextInt(int)>
41     //   19   37:invokevirtual   #9   <Method StringBuilder StringBuilder.append(int)>
42     //   20   40:ldc1            #10  <String " ">
43     //   21   42:invokevirtual   #7   <Method StringBuilder StringBuilder.append(String)>
44     //   22   45:invokevirtual   #11  <Method String StringBuilder.toString()>
45     //   23   48:astore_1        
46 
47     //   24   49:iinc            3  1
48     //*  25   52:goto            13
49         System.out.println(s);
50     //   26   55:getstatic       #12  <Field PrintStream System.out>
51     //   27   58:aload_1         
52     //   28   59:invokevirtual   #13  <Method void PrintStream.println(String)>
53     //   29   62:return          
54     }
55 }

综上案例分析,发现字符串进行“+”拼接时,内部有以下几种情况:

1.“+”直接拼接的是常量变量,如"ab"+"cd"+"ef"+"123",内部编译就把几个连接成一个常量字符串处理;

2. “+”拼接的含变量字符串,如案例2:"ok" + s + "xyz" + 5,内部编译其实是new 一个StringBuilder来进行来通过append进行拼接;

3.案例3循环过程,实质也是“+”拼接含变量字符串,因此,内部编译时,也会创建StringBuilder来进行拼接。

对比三种情况,发现第三种情况每次做循环,都会新创建一个StringBuilder对象,这会增加系统的内存,反过来就会降低系统性能。

因此,在做字符串拼接时,单线程环境下,可以显性使用StringBuilder来进行拼接,避免每循环一次就new一个StringBuilder对象;在多线程环境下,可以使用线程安全的StringBuffer,但涉及到锁竞争,StringBuffer性能会比StringBuilder差一点。

这样,起到在字符串拼接时的优化效果。

2.如何使用String.intern节省内存?

在回答这个问题之前,可以先对一段代码进行测试:

1.首先在idea设置-XX:+PrintGCDetails -Xmx6G -Xmn3G,用来打印GC日志信息,设置如下图所示:

2.执行以下例子代码:

 1 public class test4 {
 2     public static void main(String[] args) {
 3         final int MAX=10000000;
 4         System.out.println("不用intern:"+notIntern(MAX));
 5 //      System.out.println("使用intern:"+intern(MAX));
 6     }
 7     private static long notIntern(int MAX){
 8         long start = System.currentTimeMillis();
 9         for (int i = 0; i < MAX; i++) {
10             int j = i % 100;
11             String str = String.valueOf(j);
12         }
13         return System.currentTimeMillis() - start;
14     }
15 /*
16     private static long intern(int MAX){
17         long start = System.currentTimeMillis();
18         for (int i = 0; i < MAX; i++) {
19             int j = i % 100;
20             String str = String.valueOf(j).intern();
21         }
22         return System.currentTimeMillis() - start;
23     }*/
24 

未使用intern的GC日志:

 1 不用intern:354
 2 [GC (System.gc()) [PSYoungGen: 377487K->760K(2752512K)] 377487K->768K(2758656K), 0.0009102 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
 3 [Full GC (System.gc()) [PSYoungGen: 760K->0K(2752512K)] [ParOldGen: 8K->636K(6144K)] 768K->636K(2758656K), [Metaspace: 3278K->3278K(1056768K)], 0.0051214 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
 4 Heap
 5  PSYoungGen      total 2752512K, used 23593K [0x0000000700000000, 0x00000007c0000000, 0x00000007c0000000)
 6   eden space 2359296K, 1% used [0x0000000700000000,0x000000070170a548,0x0000000790000000)
 7   from space 393216K, 0% used [0x0000000790000000,0x0000000790000000,0x00000007a8000000)
 8   to   space 393216K, 0% used [0x00000007a8000000,0x00000007a8000000,0x00000007c0000000)
 9  ParOldGen       total 6144K, used 636K [0x0000000640000000, 0x0000000640600000, 0x0000000700000000)
10   object space 6144K, 10% used [0x0000000640000000,0x000000064009f2f8,0x0000000640600000)
11  Metaspace       used 3284K, capacity 4500K, committed 4864K, reserved 1056768K
12   class space    used 359K, capacity 388K, committed 512K, reserved 1048576K

根据打印的日志分析:没有使用intern情况下,执行时间为354ms,占用内存为24229k;

使用intern的GC日志:

 1 使用intern:1515
 2 [GC (System.gc()) [PSYoungGen: 613417K->1144K(2752512K)] 613417K->1152K(2758656K), 0.0012530 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
 3 [Full GC (System.gc()) [PSYoungGen: 1144K->0K(2752512K)] [ParOldGen: 8K->965K(6144K)] 1152K->965K(2758656K), [Metaspace: 3780K->3780K(1056768K)], 0.0079962 secs] [Times: user=0.02 sys=0.00, real=0.01 secs] 
 4 Heap
 5  PSYoungGen      total 2752512K, used 15729K [0x0000000700000000, 0x00000007c0000000, 0x00000007c0000000)
 6   eden space 2359296K, 0% used [0x0000000700000000,0x0000000700f5c400,0x0000000790000000)
 7   from space 393216K, 0% used [0x0000000790000000,0x0000000790000000,0x00000007a8000000)
 8   to   space 393216K, 0% used [0x00000007a8000000,0x00000007a8000000,0x00000007c0000000)
 9  ParOldGen       total 6144K, used 965K [0x0000000640000000, 0x0000000640600000, 0x0000000700000000)
10   object space 6144K, 15% used [0x0000000640000000,0x00000006400f1740,0x0000000640600000)
11  Metaspace       used 3786K, capacity 4540K, committed 4864K, reserved 1056768K
12   class space    used 420K, capacity 428K, committed 512K, reserved 1048576K

日志分析:没有使用intern情况下,执行时间为1515ms,占用内存为16694k;

综上所述:使用intern情况下,内存相对没有使用intern的情况要小,但在节省内存的同时,增加了时间复杂度。我试过将MAX=10000000再增加一个0的情况下,使用intern将会花费高达11秒的执行时间,可见,在遍历数据过大时,不建议使用intern。

因此,使用intern的前提,一定要考虑到具体的使用场景。

到这里,可以确定,使用String.intern确实可以节省内存。

接下来,分析一下intern在不同JDK版本的区别。

在JDK1.6中,字符串常量池在方法区中,方法区属于永久代。

在JDK1.7中,字符串常量池移到了堆中。

在JDK1.8中,字符串常量池移到了元空间里,与堆相独立。

分别在1.6、1.7、1.8版本执行以下一个例子:

 1 public class test5 {
 2     public static void main(String[] args) {
 3         
 4         String s1=new String("ab");
 5         s.intern();
 6         String s2="ab";
 7         System.out.println(s1==s2);
 8 
 9 
10         String s3=new String("ab")+new String("cd");
11         s3.intern();
12         String s4="abcd";
13         System.out.println(s4==s3);
14     }
15 }

1.6版本

执行结果:

fasle false

分析:

执行第一部分时:

1.代码编译时,先在字符串常量池里创建常量“ab";在调用new时,将在堆中创建一个String对象,字符串常量创建的“ab"存储到堆中,最后堆中的String对象返回一个引用给s1。

2.s.intern(),在字符串常量池里已经存在“ab”,便不再创建存放副本“ab";

3.s2="ab",s2指向的是字符串常量池里”ab",而s1指向的堆中的”ab",故两者不相等。

该示意图如下:

执行第二部分:

1.两个new出来相加的“abcd”存放在堆中,s3指向堆中的“abcd";

2.执行s3.intern(),在将“abcd"副本的存放到字符串常量池时,发现常量池里没有该”abcd",因此,成功存放;

3.s4="abcd"指向的是字符串常量池里已有的“abcd"副本,而s3指向的是堆中的"abcd",副本"abcd"的地址和堆中“abcd"地址不相同,故为false;

1.7版本

false true

执行第一部分:这一部分与jdk1.6基本类似,不同在于,s1.intern()返回的是引用,而不是副本。

执行第二部分:

1.new String("ab")+new String("cd"),先在常量池里生成“ab"和”cd",再在堆中生成“abcd";

2.执行s3.intern()时,会把“abcd”的对象引用放到字符串常量池里,发现常量池里还没有该引用,故可成功放入。当String s4="abcd",即把字符串常量池中”abcd“的引用地址赋值给s4,相当于s4指向了堆中”abcd"的地址,故s3==s4为true。

1.8版本

false true

参考网上一些博客,在1.8版本当中,使用intern()时,执行原理如下:

若字符串常量池中,包含了与当前对象相当的字符串,将返回常量池里的字符串;若不存在,则将该字符串存放进常量池里,并返回字符串的引用。

综上所述,可见三种版本当中,使用intern时,若字符串常量池里不存在相应字符串时,存在以下区别:

例如:

String s1=new String("ab"); s.intern();

jdk1.6:若字符串常量池里没有“ab",则会在常量池里存放一个“ab"副本,该副本地址与堆中的”ab"地址不相等;

jdk1.7:若字符串常量池里没有“ab",会将“ab”的对象引用放到字符串常量池里,该引用地址与堆中”ab"的地址相同;

jdk1.8:若字符串常量池中包含与当前对象相当的字符串,将返回常量池里的字符串;若不存在,则将该字符串存放进常量池里,并返回字符串的引用。

3.如何使用字符串的分割方法?

在简单进行字符串分割时,可以用indexOf替代split,因为split的性能不够稳定,故针对简单的字符串分割,可优先使用indexOf代替;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1218418.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MySql 数据库初始化,创建用户,创建数据库,授权

登录MySQL&#xff08;使用管理员账户&#xff09; mysql -u root -p 设置用户 -- 创建用户并设置密码 CREATE USER user_name% IDENTIFIED BY user_password;-- 删除用户 drop user user_name; 设置数据库 -- 创建数据库 CREATE DATABASE database_name;-- 删除数据库 DR…

web前端开发网页设计课堂作业/html练习《课程表》

目标图&#xff1a; 代码解析&#xff1a; 代码解析1<table border"3" align"center"><输入内容(的) 边界"3px" 位置"居中">2<tr><td colspan"7" align"center">课程表</td><t…

YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头

一、本文介绍 本篇文章的内容是在大家得到一个改进版本的C2f一个新的注意力机制、或者一个新的卷积模块、或者是检测头的时候如何替换我们YOLOv8模型中的原有的模块&#xff0c;从而用你的模块去进行训练模型或者检测。因为最近开了一个专栏里面涉及到挺多改进的地方&#xff…

Python | 机器学习之PCA降维

​&#x1f308;个人主页&#xff1a;Sarapines Programmer&#x1f525; 系列专栏&#xff1a;《人工智能奇遇记》&#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 目录结构 1. 机器学习之PCA降维概念 1.1 机器学习 1.2 PCA降维 2. PCA降维 2.1 实验目的 2…

Linux(多用户下)查看cuda、cudnn版本、查看已经安装的cuda版本相关命令

查看已经安装的CUDA多个版本 linux 中cuda默认安装在/usr/local目录中&#xff1a; -可以使用命令&#xff1a; ls -l /usr/local | grep cuda查看该目录下有哪些cuda版本&#xff1a; 如果输出&#xff1a; lrwxrwxrwx 1 root root 21 Dec 17 2021 cuda -> /usr/loc…

Python windows安装Python3环境

程序员的公众号&#xff1a;源1024&#xff0c;获取更多资料&#xff0c;无加密无套路&#xff01; 最近整理了一份大厂面试资料《史上最全大厂面试题》&#xff0c;Springboot、微服务、算法、数据结构、Zookeeper、Mybatis、Dubbo、linux、Kafka、Elasticsearch、数据库等等 …

企业计算机服务器中了faust勒索病毒怎么办,faust勒索病毒解密文件恢复

网络技术的不断应用发展&#xff0c;为企业注入了新的生产运营方式&#xff0c;计算机服务器为企业的数据存储提供了便利&#xff0c;让企业的生产运营得到了有力保障&#xff0c;近期&#xff0c;云天数据恢复中心陆续接到很多企业的求助&#xff0c;企业的计算机服务器遭到了…

操作符前提:各种进制与各种码(计算机基础)

1.进制 A.二进制与各种转换 其实我们经常能听到2进制、8进制、10进制、16进制这样的讲法&#xff0c;那是什么意思呢&#xff1f;其实2进制、8进制、10进制、16进制是数值的不同表⽰形式⽽已。 ⽐如&#xff1a;数值15的各种进制的表⽰形式&#xff1a; 15的2进制&#xff1…

Qt按钮大全续集(QCommandLinkButton和QDialogButtonBox )

## QCommandLinkButton 控件简介 QCommandLinkButton 控件中文名是“命令链接按钮”。QCommandLinkButton 继承QPushButton。CommandLinkButton 控件和 RadioButton 相似,都是用于在互斥选项中选择一项。表面上同平面按钮一样,但是 CommandLinkButton 除带有正常的按钮上的文…

为什么原生IP可以降低Google play账号关联风险?企业号解决8.3/10.3账号关联问题?

在Google paly应用上架的过程中&#xff0c;相信大多数开发者都遇到过开发者账号因为关联问题&#xff0c;导致应用包被拒审和封号的情况。 而众所周知&#xff0c;开发者账号注册或登录的IP地址及设备是造成账号关联的重要因素之一。酷鸟云最新上线的原生IP能有效降低账号因I…

使用Python进行可视化

字不如表&#xff0c;表不如图 在使用python进行数据分析的过程中&#xff0c;绘制图表常常是理解数据最为关键的一步&#xff1b; Python提供了5大可视化库&#xff1a; Matplotlib&#xff1a;是Python可视化库中的泰斗&#xff0c;公认的可视化工具&#xff0c;可以方便地…

xv6第一章:Operating system interfaces

操作系统通过接口为程序提供服务。xv6只包含一些基本的接口&#xff0c;如上图。 xv6采用kernel的方式。kernel是一种特殊的程序为一般程序提供服务。计算机中有许多进程但是只有一个进程。 当一个进程需要使用kernel服务&#xff0c;需要进行system call。 system call后&am…

Cesium+Vue:地形开挖

作者:CSDN @ _乐多_ 本文记录了在Cesium中进行地形开挖的方法和代码。使用Vue框架。 效果如下所示, 文章目录 前言:配置Cesium一、Vue文件二、创建地形开挖函数库三、创建绘制图形库四、创建提示语库前言:配置Cesium 参考《Vue:Vue项目中的Cesium配置备忘录》

Java小游戏之——贪吃蛇

今天详细讲解写贪吃蛇的遇到的问题 代码&#xff1a; Main类 GrameStart类 GamePanel类 启动main方法 在写贪吃蛇的时候&#xff0c;我接触到了两个新东西&#xff1a; 1.定时器Timer类。 2.paint&#xff08;&#xff09;绘图方法。第一次出现在java.awt.Component类中&…

HackTheBox-Starting Point--Tier 2---Included

文章目录 一 Included 测试过程1.1 打点1.2 横向移动1.3 权限提升 二 题目 一 Included 测试过程 1.1 打点 1.端口扫描 nmap -sV -sC 10.129.193.212.访问web站点 3.文件包含漏洞探测 观察请求地址&#xff1a;http://10.129.193.21/?filehome.php&#xff0c;利用file参数动…

【ISP图像处理】Demosaic去马赛克概念介绍以及相关方法整理

1. 基本定义 使用彩色滤光器阵列(CFA)的数码相机需要一个去马赛克程序来形成完整的RGB图像。一般的相机传感器都是采用彩色滤光片阵列(CFA)放置在光感测单元上&#xff0c;在每个像素处仅捕获三种原色成分中的一种。 去马赛克方法主要关注于复原非常规区域&#xff0c;比如边缘…

解决:Error: Missing binding xxxxx\node_modules\node-sass\vendor\win32-x64-83\

一、具体报错 二、报错原因 这个错误是由于缺少 node-sass 模块的绑定文件引起的。 三、导致原因 3.1、环境发生了变化 3.2、安装过程出现问题 四、解决方法步骤&#xff1a; 4.1、重新构建 node-sass 模块 npm rebuild node-sass 4.2、清除缓存并重新安装依赖 npm c…

通付盾Web3专题 | KYT/AML:Web3合规展业的必要条件

与传统证券一样&#xff0c;基于区块链技术发展出来的虚拟资产交易所经历了快速发展而缺乏有效监管的行业早期。除了科技光环加持的各种区块链项目方、造富神话之外&#xff0c;交易所遭到黑客攻击、内部偷窃作恶、甚至经营主体异常而致使投资人血本无归的案例亦令人触目惊心。…

Unity中Shader矩阵的转置矩阵

文章目录 前言一、转置的表示二、转置矩阵三、转置矩阵的总结1、(A^T^)^T^ A2、(A B)^T^ A^T^ B^T^3、(kA)^T^ kA^T^ (k为实数)4、(AB)^T^ B^T^A^T^5、如果 A A^T^ 则称A为对称矩阵6、如果 AA^T^ I(单位矩阵)&#xff0c;则称 A 为正交矩阵&#xff0c;同时 A^T^ A^-1…

Day32力扣打卡

打卡记录 买卖股票的最佳时机 IV&#xff08;状态机DP&#xff09; 链接 class Solution:def maxProfit(self, k: int, prices: List[int]) -> int:n len(prices)max lambda x, y: x if x > y else yf [[-0x3f3f3f3f] * 2 for _ in range(k 2)]for i in range(k 2…