卷积神经网络(CNN)衣服图像分类的实现

news2025/1/24 17:57:18

文章目录

  • 前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
      • 我的环境:
    • 2. 导入数据
    • 3.归一化
    • 4.调整图片格式
    • 5. 可视化
  • 二、构建CNN网络模型
  • 三、编译模型
  • 四、训练模型
  • 五、预测
  • 六、模型评估

前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

2. 导入数据

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

(train_images, train_labels), (test_images, test_labels) = datasets.fashion_mnist.load_data()

3.归一化

# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0, test_images / 255.0

train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
加载数据集会返回四个 NumPy 数组:

- train_images 和 train_labels 数组是训练集,模型用于学习的数据。
- test_images 和 test_labels 数组是测试集,会被用来对模型进行测试。

图像是 28x28 的 NumPy 数组,像素值介于 0 到 255 之间。标签是整数数组,介于 0 到 9 之间。这些标签对应于图像所代表的服装类:
标签标签
0T恤/上衣5凉鞋
1裤子6衬衫
2套头衫7运动鞋
3连衣裙8
4外套9短靴

4.调整图片格式

#调整数据到我们需要的格式
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))

train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

5. 可视化

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

plt.figure(figsize=(20,10))
for i in range(20):
    plt.subplot(5,10,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i]])
plt.show()

在这里插入图片描述

二、构建CNN网络模型

卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入,fashion_mnist 数据集中的图片,形状是 (28, 28, 1)即灰度图像。我们需要在声明第一层时将形状赋值给参数input_shape

model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), #卷积层1,卷积核3*3
    layers.MaxPooling2D((2, 2)),                   #池化层1,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层2,卷积核3*3
    layers.MaxPooling2D((2, 2)),                   #池化层2,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层3,卷积核3*3
    
    layers.Flatten(),                      #Flatten层,连接卷积层与全连接层
    layers.Dense(64, activation='relu'),   #全连接层,特征进一步提取
    layers.Dense(10)                       #输出层,输出预期结果
])

model.summary()  # 打印网络结构
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 26, 26, 32)        320       
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 13, 13, 32)        0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 11, 11, 64)        18496     
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64)          0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 3, 3, 64)          36928     
_________________________________________________________________
flatten (Flatten)            (None, 576)               0         
_________________________________________________________________
dense (Dense)                (None, 64)                36928     
_________________________________________________________________
dense_1 (Dense)              (None, 10)                650       
=================================================================
Total params: 93,322
Trainable params: 93,322
Non-trainable params: 0
_________________________________________________________________

在这里插入图片描述

三、编译模型

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于测量模型在训练期间的准确率。您会希望最小化此函数,以便将模型“引导”到正确的方向上。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

四、训练模型

history = model.fit(train_images, train_labels, epochs=10, 
                    validation_data=(test_images, test_labels))
Epoch 1/10
1875/1875 [==============================] - 9s 4ms/step - loss: 0.7005 - accuracy: 0.7426 - val_loss: 0.3692 - val_accuracy: 0.8697
Epoch 2/10
1875/1875 [==============================] - 6s 3ms/step - loss: 0.3303 - accuracy: 0.8789 - val_loss: 0.3106 - val_accuracy: 0.8855
Epoch 3/10
1875/1875 [==============================] - 6s 3ms/step - loss: 0.2770 - accuracy: 0.8988 - val_loss: 0.3004 - val_accuracy: 0.8902
Epoch 4/10
1875/1875 [==============================] - 6s 3ms/step - loss: 0.2398 - accuracy: 0.9097 - val_loss: 0.2898 - val_accuracy: 0.8968
Epoch 5/10
1875/1875 [==============================] - 6s 3ms/step - loss: 0.2191 - accuracy: 0.9195 - val_loss: 0.2657 - val_accuracy: 0.9057
Epoch 6/10
1875/1875 [==============================] - 6s 3ms/step - loss: 0.1952 - accuracy: 0.9292 - val_loss: 0.2731 - val_accuracy: 0.9036
Epoch 7/10
1875/1875 [==============================] - 6s 3ms/step - loss: 0.1791 - accuracy: 0.9322 - val_loss: 0.2747 - val_accuracy: 0.9056
Epoch 8/10
1875/1875 [==============================] - 6s 3ms/step - loss: 0.1576 - accuracy: 0.9416 - val_loss: 0.2750 - val_accuracy: 0.9049
Epoch 9/10
1875/1875 [==============================] - 6s 3ms/step - loss: 0.1421 - accuracy: 0.9461 - val_loss: 0.2876 - val_accuracy: 0.9032
Epoch 10/10
1875/1875 [==============================] - 6s 3ms/step - loss: 0.1330 - accuracy: 0.9509 - val_loss: 0.2769 - val_accuracy: 0.9144

五、预测

预测结果是一个包含 10 个数字的数组。它们代表模型对 10 种不同服装中每种服装!的“置信度”。我们可以看到哪个标签的置信度值最大

plt.imshow(test_images[10])

在这里插入图片描述


import numpy as np

pre = model.predict(test_images)
print(class_names[np.argmax(pre[10])])
313/313 [==============================] - 1s 2ms/step
Coat

六、模型评估

plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()

test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)

在这里插入图片描述

print("测试准确率为:",test_acc)
0.7166000008583069

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1217901.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Electron】electron-builder打包失败问题记录

文章目录 yarn下载的包不支持require()winCodeSign-2.6.0.7z下载失败nsis-3.0.4.1.7z下载失败待补充... yarn下载的包不支持require() 报错内容: var stringWidth require(string-width)^ Error [ERR_REQUIRE_ESM]: require() of ES Module /stuff/node_modules/…

SpringBoot整合Quartz示例

数据表 加不加无所谓,如果需要重启服务器后重新执行所有JOB就把sql加上 如果不加表 将application.properties中的quartz数据库配置去掉 自己执行自己的逻辑来就好,大不了每次启动之后重新加载自己的逻辑 链接:https://pan.baidu.com/s/1KqOPYMfI4eHcEMxt5Bmt…

IoC和DI

Spring 是包含众多工具的 IoC 容器,存的是对象,对象这个词在 Spring 的范围内,称之为 bean IoC 是控制反转 控制权进行了反转,比如对某一个东西的控制权在 A 手上,结果变成了 B ,Spring 管理的是 bean ,所以这里的控制权指的是 bean 的控制权,也就是对象的控制权进行了反转 …

内网穿透的应用-通过内网穿透快速搭建公网可访问的Spring Boot接口调试环境

文章目录 前言1. 本地环境搭建1.1 环境参数1.2 搭建springboot服务项目 2. 内网穿透2.1 安装配置cpolar内网穿透2.1.1 windows系统2.1.2 linux系统 2.2 创建隧道映射本地端口2.3 测试公网地址 3. 固定公网地址3.1 保留一个二级子域名3.2 配置二级子域名3.2 测试使用固定公网地址…

【数据下载】FileZilla安装及使用说明:以全球NCEP 再分析数据集为例

1 简介# 1 简介 FileZilla是一个免费开源的FTP软件,分为客户端版本和服务器版本,具备所有的FTP软件功能。 1.1 下载地址 File Zilla官网下载 1.2 安装过程 下载完成后,界面如下: 2 使用 2.1 主机设置 2.2 下载数据 全球N…

Mars3d-vue最简项目模板集成使用Mars3d的UI控件样板

备注说明&#xff1a; 1.小白可看步骤一二&#xff0c;进阶小白可直接看步骤三 步骤一&#xff1a;新建文件夹<uitest>&#xff0c;在mars3d仓库拉一份最简项目模板&#xff1a; git clone mars3d-vue-template: Vue3.x 技术栈下的Mars3D项目模板 步骤二&#xff1a;运…

受电诱骗快充取电芯片XSP08:PD+QC+华为+三星多种协议9V12V15V20V

目前市面上很多家的快充充电器&#xff0c;都有自己的私有快充协议&#xff0c;如PD协议、QC协议、华为快充协议、三星快充协议、OPPO快充协议等待&#xff0c;为了让它们都能输出快充电压&#xff0c;就需要在受电端也增加快充协议取电芯片XSP08&#xff0c;它可以和充电器通讯…

axios升级依赖版本后报错SyntaxError: Cannot use import statement outside a module

Axios构建为ES模块&#xff0c;而不是在Node中运行时的CommonJs。Jest的问题是它在Node中运行代码。这就是为什么告诉Jest转换Axios有效的原因。 Axios SDK附带了一个用于Node env的内置CommonJs文件。因此&#xff0c;我们可以通过将以下内容添加到您的package.json来修复它&a…

Windows SmartScreen中的漏洞!

&#x1f525;另一个流行漏洞是 CVE-2023-36025 - 绕过 Windows SmartScreen 安全功能&#xff0c;该功能是多个微软产品的网络钓鱼和恶意软件保护组件。 &#x1f47e;有多危险 利用该漏洞&#xff0c;攻击者可以绕过 Windows Defender SmartScreen 检查和相关警告。利用该漏…

alias linux 命令别名使用

如果在系统中你想要快速的完成一个命令&#xff0c;你可以使用alias命令&#xff1a; 如&#xff1a; alias ppsystemctl status httpd输入pp命令后即可得到如下结果 但这之时临时生效&#xff0c;一旦重启机器&#xff0c;命令就会失效&#xff1b;想要永久生效&#xff0c;…

HTML易忽略的角落【目录】

目前已有文章 **** 篇 本专栏是汇集了一些HTML常常被遗忘的知识&#xff0c;这里算是温故而知新&#xff0c;往往这些零碎的知识点&#xff0c;在你开发中能起到炸惊效果。我们每个人都没有过目不忘&#xff0c;过久不忘的本事&#xff0c;就让这一点点知识慢慢渗透你的脑海。 …

扩散模型实战(九):使用CLIP模型引导和控制扩散模型

推荐阅读列表&#xff1a; 扩散模型实战&#xff08;一&#xff09;&#xff1a;基本原理介绍 扩散模型实战&#xff08;二&#xff09;&#xff1a;扩散模型的发展 扩散模型实战&#xff08;三&#xff09;&#xff1a;扩散模型的应用 扩散模型实战&#xff08;四&#xff…

<MySQL> 什么是数据库索引?数据库索引的底层结构是什么?

目录 一、什么是数据库索引? 1.1 索引的概念 1.2 索引的特点 1.3 索引的适用场景 1.4 索引的使用 1.4.1 创建索引 1.4.2 查看索引 1.4.3 删除索引 二、数据库索引的底层结构是什么&#xff1f; 2.1 数据库中的 B树 长啥样&#xff1f; 2.2 B树为什么适合做数据库索…

缩放图片算法优化 sse

前情提要 这里实现了打印文件的缩放算法 缩放打印文件&#xff08;prt,prn&#xff09; 核心功能如下&#xff1a; void CZoomPrtFile::zoomPrtFile(BYTE* pTargetData) {float xRatio static_cast<float>(m_perWidth - 1) / m_zoomWidth;float yRatio static_cast<…

[PHP]写个简单的分页静态接口用宝塔部署到Nginx

使用get方式传入page和pageSize参数&#xff0c;接口根据参数进行分页处理。 1.创建一个 PHP 文件 例如 city.php&#xff0c;用于定义接口和返回 JSON 数据。 2.在 city.php 文件中编写接口 <?php// 设置响应内容为 JSON 格式 header(Content-Type: application/json);…

iApp祁天社区UI成品源码 功能齐全的社区应用

iApp祁天社区UI成品源码是一个非常实用的资源&#xff0c;提供了完整的源代码&#xff0c;可以帮助您快速搭建一个功能齐全的社区应用。 这个源码具有丰富的UI设计&#xff0c;经过精心调整和优化&#xff0c;确保用户体验流畅而舒适。它不仅具备基本的社区功能&#xff0c;如…

linux清理僵尸进程

当你top看到这个&#xff0c;或者按M后看到内存吃的很多&#xff0c;那你看下有没有&#x1f9df; 二选一查看是什么进程 ps aux | egrep "Z|defunct" ps -aux | awk {if($8"Z"){print $2,$11}}没用直接杀杀杀 kill -9 查到的PID号可中断下载文件 wget…

基于SSM的智慧养老平台设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…

OpenCV中的像素重映射原理及实战分析

引言 映射是个数学术语&#xff0c;指两个元素的集之间元素相互“对应”的关系&#xff0c;为名词。映射&#xff0c;或者射影&#xff0c;在数学及相关的领域经常等同于函数。 基于此&#xff0c;部分映射就相当于部分函数&#xff0c;而完全映射相当于完全函数。 说的简单点…

最新计算机网络考试试题分析与整理

博主今天下午刚刚考完试&#xff0c;针对今天计网考试知识点进行整理总结&#xff0c;希望可以对大家有所帮助~ 目录 1.先看简答大题共五道 1.1CRC冗余码计算 1.2tcp拥塞控制 1.3tcp报文段 1.4RIP路由表更新 1.5子网划分 2.再看填空题七道 2.1网络边缘端系统间的通信关…