C++入门第七篇--STL模板--vector模拟实现

news2025/1/19 20:30:41

前言:

有了前面的string库的介绍,在这里我就不再介绍vector库了,而是直接模拟实现了。

vector库的概念和作用:

vector库是针对于数组的数据类型的容器,它有点类似我们曾经实现过的顺序表,你完全可以按照顺序表去理解vector,针对顺序表,我们自然少不了增删查改的功能,所以接下来让我们模拟实现一下vector库。

模拟实现过程:

1.私有成员变量的设置:

在这里,我们这样设置我们的私有成员变量,由于文档中C/C++库的函数大部分是用迭代器实现的,故我们模拟的时候也使用迭代器去操作,故成员如下:

private:
	iterator _start;
	iterator _finish;
	iterator _endofstorage;

其中_start指向顺序表开头,_finish指向顺序表的数字的结尾,而_endofstorage则控制容量,指向容量的结尾
但是我们C++中是没有所谓的iterator的,但是我们知道iterator的本质是指针,故我们对类型重命名如下:

typedef T* iterator;
typedef const T* const_iterator;

2.构造函数 析构函数 拷贝构造函数:

私有成员建立好后,我们下一个便是构建基本的三个函数:构造,析构,拷贝构造。
首先是构造函数:

vector()
	:_start(nullptr)
	, _finish(nullptr)
	, _endofstorage(nullptr)
{}

这里就是常规的全让指针为空,因为我们会在调整容量的位置去为这三个成员变量赋值
析构函数:

~vector()
{
	delete[] _start;
	_start = _finish = _endofstorage = nullptr;
}

这里需要注意的点就是:我们是需要在堆区上动态开辟空间的,故我们的析构函数是必须显式实例化的,要让析构函数释放掉我们的堆区空间。
拷贝构造函数:

vector(const vector<T>& s)
	:_start(nullptr)
	, _finish(nullptr)
	, _endofstorage(nullptr)
{
	for (auto& ch : s)
	{
		push_back(ch);
	}
}

再拷贝构造这里,我使用了遍历尾插的方式,或许你会说,直接memcpy不是更好么,但是我们的顺序表不仅仅要存储内置类型,有时也要存储自定义类型,而memcpy对应的是一种浅拷贝,一旦涉及到指针的问题,就会有多次释放的危险,故我们在这里采取尾插的方式,即自定义类型会调用其赋值运算符重载,内置类型则直接赋值,这样就很好的避免了多次释放的问题。

3.赋值运算符重载:

void swap( vector<T>& tmp)
{
	std::swap(_start, tmp._start);
	std::swap(_finish, tmp._finish);
	std::swap(_endofstorage, tmp._endofstorage);
}
vector<T>& operator=( vector<T> tmp)
{
	swap(tmp);
	return *this;
}

我在这里采取的现代写法,和string一样,采用一个变量tmp来打工的方式将值转给*this,大体的写法概念不变,我这里不过多赘述了。

4.size长度 capacity容量:

size用来返回顺序表的长度,而capacity用来返回顺序表的容量

size_t size() const
{
	return _finish - _start;
}
size_t capacity() const
{
	return _endofstorage - _start;
}

5.首尾迭代器返回:

iterator begin()
{
	return _start;
}
iterator end()
{
	return _finish;
}
const_iterator begin()const
{
	return _start;
}
const_iterator end()const
{
	return _finish;
}

在这里我们写了两个版本,一个是可读可写版本,一个是可读不可写版本,分别返回不同的迭代器

6.下标访问操作符[]重载:

其基本和我们字符串的写法区别不大:

T& operator[](size_t pos)
{
	assert(pos < size());
	return _start[pos];
}
const T& operator[](size_t pos) const
{
	assert(pos < size());
	return _start[pos];
}

同样也是两个版本,可改与不可改

7.扩容!!!(本次实现的重点!)

扩容,是我们本次实现的重点,在这里牵扯到一个很关键的问题:迭代器失效。
何为迭代器失效呢?
先看下面的代码:

void reserve(size_t n)
{
	if (n > capacity())
	{
		T* tmp = new T[n];
		if (_start)
		{
			int i = 0;
			for (i = 0; i < size(); i++)
			{
				tmp[i] = _start[i];
			}
			delete _start;
		}
		_start = tmp;
		_finish = _start + size();
		_endofstorage = _start + capacirty();
	}
}

这段代码就涉及到严重的迭代器失效的问题,问题出在我们的delete被销毁后,我们对应的size()和capacity()本质上指向的是之前的被销毁的数组的地址,这样我们使用函数是得不到正确的长度的,因为迭代器此时的地址是无效的,这便是我们所谓的迭代器失效,你可以看这张图理解:
在这里插入图片描述
所以,我们可以这样去修改程序:

void reserve(size_t n)
{
	size_t sz = size();
	if (n > capacity())
	{
		T* tmp = new T[n];
		if (_start)
		{
			int i = 0;
			for (i = 0; i < size(); i++)
			{
				tmp[i] = _start[i];
			}
			delete _start;
		}
		_start = tmp;
		_finish = _start + sz;
		_endofstorage = _start + n;
	}
}

即先用一个变量将长度存储起来,而不是再用失效的迭代器返回长度和容量,在这里就是sz来存储,这样,我们就不会出现我们的长度是错误的问题了。

7.改变数组长度:

	void resize(size_t n, const T& x = T())//改变数组长度
	{              //注意,内置类型是可以调用构造函数的,在模板这个章节是支持的,在这里别忘了加一个const,因为我们的缺省值是常量,不加const引用权限会放大
		if (n <= capacity())
		{
			_finish = _start + n;
		}
		else
		{
			reserve(n);
			//剩下来填数据:
			while (_finish < _start + n)
			{
				*_finish = x;
				_finish++;
			}
		}
	}

解决了扩容问题,我们其他的都很好解决了,这里也是一样,我们考虑两种情况即可,但是注意依旧用赋值不要用memcpy,因为涉及到浅拷贝的问题。

8.尾插 尾删:

尾插:

void push_back(const T& x)  //尾插
{
	if (_finish == _endofstorage)
	{
		reserve(capacity() == 0 ? 4 : 2 * capacity());
	}
	*_finish = x;
	_finish++;
}

尾删:

void push_pop()
{
	_finish--;
}

没什么好说的,顺手就应该写出来。

9.任意插 任意删:

任意删:

	iterator& erase(iterator pos)
	{
		assert(pos >= _start);
		assert(pos <= _finish);

		iterator cur = pos + 1;
		while (cur < _finish)
		{
			*(cur - 1) = *cur;
			cur++;
		}
		_finish--;
		return pos;
	}

任意删的思路和我们顺序表的任意删差不多,直接覆盖即可,强调一下别忘了对我们传入的迭代器进行检验就好。
但是任意删有一个细节就是,我们会涉及到迭代器失效的问题,即这个位置被删除后再想针对这个位置删除就是出现问题,所以我们返回pos,即删除后的下一个位置的指针,这样就可以一直删,不会删除一次就失效了。
任意插:

void insert(iterator pos, const T& x)//任意插
{
	assert(pos >= _start);
	assert(pos <= _finish);//这里可以等于,方便尾插
	if (_finish == _endofstorage)
	{
		size_t range = pos - _start;//在这里先存储一个长度变量方便后续迭代器失效时重新指定位置
		reserve(capacity() == 0 ? 4 : 2 * capacity());
		pos = _start + range;//由于扩容之后pos失效,那样的话pos不在新数组上,故我们要存储一个整型,方便扩容之后把pos重新带到新数组上来,别忘了任意插也存在扩容后迭代器失效的问题,我们的pos也会停留在之前的数组上被销毁之后就丢失了,要重新给到新的数组上
	}
	iterator end = _finish - 1;
	while (end >= pos)//这里要等于,保证其能在pos的位置之前插而不是正好插入pos位置
	{
		*(end + 1) = *end;
		end--;
	}
	*pos = x;
	_finish++;
}

在任意插这里,我们需要注意一个扩容的问题,凡是涉及到扩容和删除的问题,当我们使用迭代器去操作的时候,就要最好看一看是否涉及到迭代器失效的问题,在任意删这里就涉及到了,po针对的是被删除的数组的地址,但我们扩容后,pos的原位置直接失效了,故我们需要在扩容后调整pos到新数组的对应位置上,即:

if (_finish == _endofstorage)
	{
		size_t range = pos - _start;//在这里先存储一个长度变量方便后续迭代器失效时重新指定位置
		reserve(capacity() == 0 ? 4 : 2 * capacity());
		pos = _start + range;//由于扩容之后pos失效,那样的话pos不在新数组上,故我们要存储一个整型,方便扩容之后把pos重新带到新数组上来,别忘了任意插也存在扩容后迭代器失效的问题,我们的pos也会停留在之前的数组上被销毁之后就丢失了,要重新给到新的数组上
	}

然后一个常规的插入pos即可,这里最关键的便是针对迭代器失效我们应该如何处理。

总结:

以上便是我们vector模拟实现的全部内容,和string一样,我们模拟实现vector最关键的目的是学会一些思路,以及熟练的去使用vector,这是最关键的。
补充一句,WBG加油!!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1215417.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++二分算法:使数组严格递增

涉及知识点 动态规划 二分查找 题目 给你两个整数数组 arr1 和 arr2&#xff0c;返回使 arr1 严格递增所需要的最小「操作」数&#xff08;可能为 0&#xff09;。 每一步「操作」中&#xff0c;你可以分别从 arr1 和 arr2 中各选出一个索引&#xff0c;分别为 i 和 j&#…

查询附近500米的餐厅

前言 查询附近500米数据&#xff0c;第一反应是用ST_Buffer&#xff0c;但是ST_Buffer文档写了一句话&#xff0c;使用ST_DWithin效率更高。 ST_Buffer (postgis.net) ST_DWithin (postgis.net) 数据取点 我有一种坐标系4326的表ne_10m_admin_0_boundary_lines_land&#xf…

DataCamp在线学习平台

DataCamp&#xff08;https://www.datacamp.com/blog&#xff09;是一个在线学习平台&#xff0c;专注于数据科学和分析领域的教育。该平台提供丰富的课程&#xff0c;涵盖了从数据处理到机器学习和深度学习的各个方面。以下是DataCamp的主要特点&#xff1a; 互动学习&#x…

【Linux】命令expect使用详解

&#x1f984; 个人主页——&#x1f390;个人主页 &#x1f390;✨&#x1f341; &#x1fa81;&#x1f341;&#x1fa81;&#x1f341;&#x1fa81;&#x1f341;&#x1fa81;&#x1f341; 感谢点赞和关注 &#xff0c;每天进步一点点&#xff01;加油&#xff01;&…

继电器测试负载箱的价格和性价比如何?

继电器测试负载箱是一种专门用于测试继电器性能的设备&#xff0c;它可以模拟各种负载条件&#xff0c;对继电器进行全方位的性能测试。这种设备在电力系统、自动化设备、通信设备等领域有着广泛的应用。 价格方面&#xff0c;继电器测试负载箱的价格因品牌、型号、性能等因素而…

Lobatto Quadrature-数值积分

See https://mathworld.wolfram.com/LobattoQuadrature.html

达梦数据库常用参数查询

字符集 字符是各种文字和符号的统称&#xff0c;包括各个国家文字、标点符号、表情、数字等等。 字符集 就是一系列字符的集合。字符集的种类较多&#xff0c;每个字符集可以表示的字符范围通常不同&#xff0c;就比如说有些字符集是无法表示汉字的。 常见的字符集有 ASCII、G…

系列四、本地接口(Native Interface)

一、概述 本地接口的作用是融合不同的编程语言为Java所用&#xff0c;它的初衷是融合C/C程序&#xff0c;Java诞生的时候正是C/C横行的时候&#xff0c;要想立足&#xff0c;必须要调用C/C的程序&#xff0c;于是Java就在内存中开辟了一块区域专门用于处理标记为native的代码&a…

如何使用ArcGIS Pro制作粉饰效果

在地图上&#xff0c;如果某个部分比较重要&#xff0c;直接的制图不能将其凸显出来&#xff0c;如果想要突出显示重要部分&#xff0c;可以通过粉饰效果来实现&#xff0c;这里为大家介绍一下方法&#xff0c;希望能对你有所帮助。 数据来源 本教程所使用的数据是从水经微图…

印染污水处理设备有哪些分类

印染污水处理设备有多种分类方法。根据处理方法&#xff0c;可以分为物理法、化学法、生物法等。 物理法处理设备主要包括格栅、沉淀池、过滤器等&#xff0c;利用物理分离、去除的原理&#xff0c;将污水中的悬浮物和沉淀物去除。化学法处理设备主要包括混凝和氧化等&#xf…

kaggle项目部署

目录 流程详细步骤注意事项 流程 修改模块地址打包项目上传到kaggle Datasets创建code文件&#xff0c;导入数据与项目粘贴train.py文件&#xff0c;调整超参数&#xff0c;选择GPUsave version&#xff0c;后台训练查看训练结果 详细步骤 打开kaggle网站&#xff0c;点击da…

中移链共识机制介绍

01 为什么需要共识 共识是对某事达成的共同看法&#xff0c;它是区块链的灵魂&#xff0c;对确保区块链的完整性和安全性起着至关重要的作用。在传统的集中式系统中&#xff0c;单个实体或一组实体有权验证和记录交易。然而&#xff0c;区块链中的一个核心概念是去中心化&…

linux查看资源占用情况常用命令

1. 查看 CPU 使用情况&#xff1a; top这个命令会显示系统中当前活动进程的实时信息&#xff0c;包括 CPU 使用率、内存使用率等。按 q 键退出。 2. 查看内存使用情况&#xff1a; free -m这个命令显示系统内存的使用情况&#xff0c;以兆字节&#xff08;MB&#xff09;为…

VINS-MONO代码解读----配置文件,数据结构,前端feature_tracker

跑通代码之后可以深入看代码了&#xff0c;整体代码很多&#xff0c;可先从配置文件开始看。 1. VINS-MONO配置文件理解 参考启动文件launch与参数配置文件yaml介绍 启动文件launch&#xff1a;euroc.launch 参数配置文件yaml&#xff1a;euroc_config.yaml&#xff1a;包括…

【kerberos】使用 curl 访问受 Kerberos HTTP SPNEGO 保护的 URL

前言&#xff1a; 大数据集群集成 Kerberos 后&#xff0c;很多 WEBUI 打开都会提示输入用户名和密码。由于我想获取 flink 任务的详情&#xff0c;且KNOX 并不支持Flink api&#xff0c;查看KNOX 直接的列表&#xff1a;https://docs.cloudera.com/cdp-private-cloud-base/7.…

vivado产生报告阅读分析-Report Power4

在布线后会生成“ Power Report ” &#xff08; 功耗报告 &#xff09;&#xff0c; 它基于当前器件工作条件和设计的切换率来报告功耗详情。功耗分析要求网表已完成综合或设计已完成布局布线。 • set_operating_conditions 命令用于设置工作条件。 • set_switching_ac…

想转行互联网行业,是选择网络安全还是人工智能?

随着数字时代的到来&#xff0c;网络安全和人工智能成了科技创新产业的重要组成部分。也逐渐成了大多数人心中热门的行业选择。那么该如何抉择呢&#xff1f; 首先我们来了解下人工智能的发展前景&#xff1a; 如今&#xff0c;人工智能技术无论是在核心技术方面&#xff0c…

插件漏洞导致 60 万个 WordPress 网站遭受攻击

WordPress 插件 WP Fastest Cache 容易受到 SQL 注入漏洞的攻击&#xff0c;该漏洞可能允许未经身份验证的攻击者读取站点数据库的内容。 WP Fastest Cache 是一个缓存插件&#xff0c;用于加速页面加载、改善访问者体验并提高网站在 Google 搜索上的排名。 根据 WordPress.o…

photoshop插件开发入门

photoshop 学习资料和sdk 下载地址https://developer.adobe.com/console/servicesandapis/ps 脚本编程文档 官方文档&#xff1a; https://extendscript.docsforadobe.dev/ 官方文档&#xff1a; https://helpx.adobe.com/hk_en/photoshop/using/scripting.html open(new F…

如何做到百万数据半小时跑批结束

什么是跑批 跑批就是应用程序定时对数据的批量处理。 跑批有以下特性&#xff1a; 大数据量&#xff1a;批量任务一般伴随着大量的数据处理 自动化&#xff1a;要求制定时间或频率自动运行 性能&#xff1a;要求在指定时间内完成批处理任务 健壮性&#xff1a;针对于异常数…