深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别 | 第1天

news2025/1/5 19:06:47

文章目录

  • 前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
      • 我的环境:
    • 2. 导入数据
    • 3.归一化
    • 4.可视化
    • 5.调整图片格式
  • 二、构建CNN网络模型
  • 三、编译模型
  • 四、训练模型
  • 五、预测
  • 六、知识点详解
    • 1. MNIST手写数字数据集介绍
    • 2. 神经网络程序说明
    • 3. 网络结构说明

前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

2. 导入数据

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()

3.归一化

# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0, test_images / 255.0

train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

4.可视化

plt.figure(figsize=(20,10))
for i in range(20):
    plt.subplot(5,10,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(train_labels[i])
plt.show()

在这里插入图片描述

5.调整图片格式

#调整数据到我们需要的格式
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))

# train_images, test_images = train_images / 255.0, test_images / 255.0

train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

二、构建CNN网络模型

model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10)
])

model.summary()
Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 conv2d (Conv2D)             (None, 26, 26, 32)        320       
                                                                 
 max_pooling2d (MaxPooling2D  (None, 13, 13, 32)       0         
 )                                                               
                                                                 
 conv2d_1 (Conv2D)           (None, 11, 11, 64)        18496     
                                                                 
 max_pooling2d_1 (MaxPooling  (None, 5, 5, 64)         0         
 2D)                                                             
                                                                 
 flatten (Flatten)           (None, 1600)              0         
                                                                 
 dense (Dense)               (None, 64)                102464    
                                                                 
 dense_1 (Dense)             (None, 10)                650       
                                                                 
=================================================================
Total params: 121,930
Trainable params: 121,930
Non-trainable params: 0
_________________________________________________________________

三、编译模型

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

四、训练模型

history = model.fit(train_images, train_labels, epochs=10, 
                    validation_data=(test_images, test_labels))
Epoch 1/10
1875/1875 [==============================] - 15s 8ms/step - loss: 0.1429 - accuracy: 0.9562 - val_loss: 0.0550 - val_accuracy: 0.9803
Epoch 2/10
1875/1875 [==============================] - 14s 7ms/step - loss: 0.0460 - accuracy: 0.9856 - val_loss: 0.0352 - val_accuracy: 0.9883
Epoch 3/10
1875/1875 [==============================] - 13s 7ms/step - loss: 0.0312 - accuracy: 0.9904 - val_loss: 0.0371 - val_accuracy: 0.9880
Epoch 4/10
1875/1875 [==============================] - 14s 7ms/step - loss: 0.0234 - accuracy: 0.9925 - val_loss: 0.0330 - val_accuracy: 0.9900
Epoch 5/10
1875/1875 [==============================] - 14s 8ms/step - loss: 0.0176 - accuracy: 0.9944 - val_loss: 0.0311 - val_accuracy: 0.9904
Epoch 6/10
1875/1875 [==============================] - 16s 9ms/step - loss: 0.0136 - accuracy: 0.9954 - val_loss: 0.0300 - val_accuracy: 0.9911
Epoch 7/10
1875/1875 [==============================] - 14s 8ms/step - loss: 0.0109 - accuracy: 0.9964 - val_loss: 0.0328 - val_accuracy: 0.9909
Epoch 8/10
1875/1875 [==============================] - 14s 7ms/step - loss: 0.0097 - accuracy: 0.9969 - val_loss: 0.0340 - val_accuracy: 0.9903
Epoch 9/10
1875/1875 [==============================] - 15s 8ms/step - loss: 0.0078 - accuracy: 0.9974 - val_loss: 0.0499 - val_accuracy: 0.9879
Epoch 10/10
1875/1875 [==============================] - 13s 7ms/step - loss: 0.0078 - accuracy: 0.9976 - val_loss: 0.0350 - val_accuracy: 0.9902

五、预测

通过下面的网络结构我们可以简单理解为,输入一张图片,将会得到一组数,这组代表这张图片上的数字为0~9中每一个数字的几率,out数字越大可能性越大。
在这里插入图片描述

plt.imshow(test_images[1])

在这里插入图片描述

输出测试集中第一张图片的预测结果

pre = model.predict(test_images)
pre[1]
313/313 [==============================] - 1s 2ms/step
array([  3.3290668 ,   0.29532072,  21.943724  ,  -7.09336   ,
       -15.3133955 , -28.765621  ,  -1.8459738 ,  -5.761892  ,
        -2.966585  , -19.222878  ], dtype=float32)

六、知识点详解

本文使用的是最简单的CNN模型- -LeNet-5,如果是第一次接触深度学习的话,可以先试着把代码跑通,然后再尝试去理解其中的代码。

1. MNIST手写数字数据集介绍

MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一。数据集中的数字图片是由250个不同职业的人纯手写绘制,数据集获取的网址为:http://yann.lecun.com/exdb/mnist/ (下载后需解压)。我们一般会采用(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()这行代码直接调用,这样就比较简单

MNIST手写数字数据集中包含了70000张图片,其中60000张为训练数据,10000为测试数据,70000张图片均是28*28,数据集样本如下:

在这里插入图片描述

如果我们把每一张图片中的像素转换为向量,则得到长度为28*28=784的向量。因此我们可以把训练集看成是一个[60000,784]的张量,第一个维度表示图片的索引,第二个维度表示每张图片中的像素点。而图片里的每个像素点的值介于0-1之间。

在这里插入图片描述

2. 神经网络程序说明

神经网络程序可以简单概括如下:
在这里插入图片描述

3. 网络结构说明

在这里插入图片描述

各层的作用

  • 输入层:用于将数据输入到训练网络
  • 卷积层:使用卷积核提取图片特征
  • 池化层:进行下采样,用更高层的抽象表示图像特征
  • Flatten层:将多维的输入一维化,常用在卷积层到全连接层的过渡
  • 全连接层:起到“特征提取器”的作用

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1214221.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计算机毕业设计 基于Vue的米家商城系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…

解决Qt5.13.0无MySQL驱动问题

一、前言 由于Qt5.12.3是最后提供mysql数据库插件的版本,往后的版本需要自行编译对应的mysql数据库插件,官方安装包不再提供。使用高版本的Qt就需要自行编译mysql驱动。 若没有编译在QT中调用Qsqldatabase库连接mysql时,提示出现如下问题&a…

全国矿产地空间分布数据

我国矿产资源总量丰富、品种齐全,但人均占有量不足世界平均水平,矿产资源质量较差,地理分布不均衡,大型、超大型矿和露采矿较少,开发利用率不足,选矿冶炼技术落后。我国铁矿、锰矿、铬铁矿、铜矿、铝土矿等…

YOLOv5独家原创改进:最新原创WIoU_NMS改进点,改进有效可以直接当做自己的原创改进点来写,提升网络模型性能精度

💡该教程为属于《芒果书》📚系列,包含大量的原创首发改进方式, 所有文章都是全网首发原创改进内容🚀 💡本篇文章为YOLOv5独家原创改进:独家首发最新原创WIoU_NMS改进点,改进有效可以直接当做自己的原创改进点来写,提升网络模型性能精度。 💡对自己数据集改进有效…

Postman内置动态参数以及自定义的动态参数

近期在复习Postman的基础知识,在小破站上跟着百里老师系统复习了一遍,也做了一些笔记,希望可以给大家一点点启发。 一)内置动态参数 {{$timestamp}} 生成当前时间的时间戳{{$randomInt}} 生成0-1000之间的随机数{{$guid}} 生成随…

基于平衡优化器算法优化概率神经网络PNN的分类预测 - 附代码

基于平衡优化器算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于平衡优化器算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于平衡优化器优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针…

LeetCode - 141. 环形链表 (C语言,快慢指针,配图)

141. 环形链表 - 力扣(LeetCode) 1. 什么是快慢指针 这里我们我们将介绍环形链表的经典解法——快慢指针,简单理解,指针移动快的叫做快指针fast,移动速度慢的叫慢指针slow。一般我们设快指针走两步,慢指针走…

基于单片机的汽车安全气囊系统故障仿真设计

**单片机设计介绍, 基于单片机微波炉加热箱系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机的汽车安全气囊系统的故障检测系统是一种用于检测安全气囊系统故障的智能化设备,通过单片机控…

js中的instance,isPrototype和getPrototypeOf的使用,来判断类的关系

😁 作者简介:一名大四的学生,致力学习前端开发技术 ⭐️个人主页:夜宵饽饽的主页 ❔ 系列专栏:JavaScript小贴士 👐学习格言:成功不是终点,失败也并非末日,最重要的是继续…

conda安装与镜像源配置

下载Anaconda 最好去下面这个国内镜像网站: https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ 下载过程中,我勾选了添加到环境变量(虽然软件爆红提醒了),取消勾选了设置python3.7为默认python版本。 接下来&…

LLM系列 | 27 : 天工大模型Skywork解读及揭露刷榜内幕引发的思考

引言 简介 预训练 ​语料 分词器 模型架构 Infrastructure 训练细节 评测 实战 总结 思考 0. 引言 晨起开门雪满山,雪晴云淡日光寒。 Created by DALLE 3 小伙伴们好,我是《小窗幽记机器学习》的小编:卖热干面的小女孩。紧接前…

并发编程(多线程)-可见性、有序性、原子性问题

可见性 可见性概念 可见性(Visibility):是指一个线程对共享变量进行修改,另一个先立即得到修改后的最新值 可见性演示 案例演示:一个线程根据boolean类型的标记flag,while循环,另一个线程改…

基于鸽群算法优化概率神经网络PNN的分类预测 - 附代码

基于鸽群算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于鸽群算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于鸽群优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神经网络的光滑…

Android设计模式--策略模式

每天都要完成一个小目标 一,定义 策略模式定义了一系列的算法,并将每一个算法封装起来,而且使他们还可以相互替换。策略模式让算法独立于使用它的客户而独立变化 什么意思呢?在我们平时的开发中,难免会遇到这种情况&…

保姆级fastDFS安装教程

一、软件准备 环境需要准备四个包,分别是: 1. libfastcommon_1.0.36 2. FastdfsFastdfs_v5.11 3. fastdfs-nginx-module5.11 4. nginxnginx-1.12.2 二、环境准备 安装perl环境,后续编译fastdfs会用到 yum -y install perl* yum -y ins…

MySQL数据库清理Relay_Log_File日志

背景 “Relay_Log_File” 是 MySQL 中用于复制的参数之一。在 MySQL 复制中,当一个服务器作为主服务器(master)时,它会将其更改写入二进制日志文件(binary log file)。而另一个服务器作为从服务器&#xf…

springboot--单元测试

单元测试 前言1、写测试要用的类2、写测试要用的类3、运行测试类4、spring-boot-starter-test默认提供了以下库4.1 junit54.1.1 DisplayName:为测试类或者测试方法设置展示名称4.1.2 BeforeAll:所有测试方法运行之前先运行这个4.1.3 BeforeEach:每个测试…

Vue3问题:如何实现拼图验证+邮箱登录功能?前后端!

前端功能问题系列文章,点击上方合集↑ 序言 大家好,我是大澈! 本文约3500字,整篇阅读大约需要5分钟。 本文主要内容分三部分,第一部分是需求分析,第二部分是实现步骤,第三部分是问题详解。 …

给女朋友开发个小程序低价点外卖吃还能赚钱

前言 今天又是无聊的一天,逛了下GitHub,发现一个库里面介绍美团饿了吗外卖红包外卖优惠券,先领红包再下单。外卖红包优惠券,cps分成,别人领红包下单,你拿佣金。哇靠,那我岂不是可以省钱还可以赚钱,yyds。。。。想想都美好哈哈哈!!! 回到正题,这个是美团饿了么分销…

esp-01刷固件/下载软件到内部单片机的方法

此文章为转载,非原创 一、准备 需要准备三个东西: 1.esp模块。ESP-01 和 ESP-01s 的引脚及 flash 容量基本完全兼容,只是内部硬件设计粗糙与否的区别,所以理论上都适用。 2.官方固件。此部分可以从安信可官方教程中下载&#xff0…