图像超分辨率重建(super resolution,SR)是指利用计算机将一幅低分辨率图像(low resolution,LR)或图像序列进行处理,恢复出高分辨率图像(high resolution,HR)的一种图像处理技术。简单来说就是,利用图像超分辨率技术,可以使模糊的照片变得更清晰。
在这些方法中,可以分为三类,基于插值,基于重建,基于学习。基于插值的方法实现简单,已经广泛应用,但是这些线性的模型限制住了它们恢复高频能力的细节。基于稀疏表示的技术[1]通过使用先验知识增强了线性模型的能力。这类技术假设任意的自然图像可以被字典的元素稀疏表示,这种字典可以形成一个数据库且从数据库中学习到低分辨率图像到高分辨率图像的映射,但是这类方法计算复杂,需要大量计算资源。
基于CNN(卷积神经网络)的模型SRCNN[2]首先将CNN引入SISR中,它仅仅使用三层网络,就取得了先进的结果。随后,各种基于深度学习的模型,进入SISR领域,大致分为以下两个大的方向。一种是追求细节的恢复,以PSNR,SSIM等评价标准的算法,其中以SRCNN模型为代表。另外一种以降低感知损失为目标,不注重细节,看重大局观,以SRGAN[3]为代表的一系列算法。两种不同方向的算法,应用的领域也不相同。
Real-ESRGAN 是一个托管在 Github 平台上的开源项目,其目标是开发出实用的图像/视频修复算法。
基于 Real-ESRGAN的源码 实现 ,传入图片地址,输出重建超清图片的base64传
调用
源码已上传 资源 ,无需积分下载
源码下载