笔尖笔帽检测1:笔尖笔帽检测数据集(含下载链接)

news2025/4/21 8:53:46

笔尖笔帽检测1:笔尖笔帽检测数据集(含下载链接)

目录

笔尖笔帽检测1:笔尖笔帽检测数据集(含下载链接)

1. 前言

2. 手笔检测数据集

(1)Hand-voc1

(2)Hand-voc2

(3)Hand-voc3

(4)Hand-Pen-voc手笔检测数据集

(5)手笔目标框可视化效果

 3. 笔尖笔帽关键点检测数据集

(1)dataset-pen2

(2)笔尖笔帽关键点可视化效果

4. 数据集下载

5. 笔尖笔帽关键点检测(Python/C++/Android)

6.特别版: 笔尖指尖检测


1. 前言

目前在AI智慧教育领域,有一个比较火热的教育产品,即指尖点读或者笔尖点读功能,其核心算法就是通过深度学习的方法获得笔尖或者指尖的位置,在通过OCR识别文本,最后通过TTS(TextToSpeech)将文本转为语音;其中OCR和TTS算法都已经研究非常成熟了,而指尖或者笔尖检测的方法也有一些开源的项目可以参考实现。本项目将实现笔尖笔帽关键点检测算法,其中使用YOLOv5模型实现手部检测(手握着笔目标检测),使用HRNet,LiteHRNet和Mobilenet-v2模型实现笔尖笔帽关键点检测。项目分为数据标注,模型训练和Android部署等多个章节,本篇是项目《笔尖笔帽检测》系列文章之笔尖笔帽检测数据集说明;

项目收集了手笔检测数据集和笔尖笔帽关键点检测数据集:

  • 手笔检测数据集(Hand-Pen Detection Dataset):共收集了四个:Hand-voc1,Hand-voc2和Hand-voc3,Hand-Pen-voc手笔检测数据集总共约7万张图片;标注格式统一转换为VOC数据格式,手部目标框标注为hand,手握着笔的目标框标注为hand_pen,可用于深度学习手部目标检测模型算法开发
  • 笔尖笔帽关键点检测数据集(Pen-tip Keypoints Dataset):收集了1个数据集:dataset-pen2,标注了手握笔(hand_pen)的目标区域和笔的两端(笔尖和笔帽);数据集分为测试集Test和训练集Train,其中Test数据集有1075张图片,Train数据集有28603张图片;标注格式统一转换为COCO数据格式,可用于深度学习笔尖笔帽关键点检测模型训练
  • 数据收集和标注是一件十分繁杂且又费时费力的工作,请尊重我的劳动成果。

 【尊重原则,转载请注明出处】  https://blog.csdn.net/guyuealian/article/details/134070255

  Android笔尖笔帽关键点检测APP Demo体验:

  


 更多项目《笔尖笔帽检测》系列文章请参考:

  • 笔尖笔帽检测1:笔尖笔帽检测数据集(含下载链接)https://blog.csdn.net/guyuealian/article/details/134070255
  • 笔尖笔帽检测2:Pytorch实现笔尖笔帽检测算法(含训练代码和数据集)https://blog.csdn.net/guyuealian/article/details/134070483
  • 笔尖笔帽检测3:Android实现笔尖笔帽检测算法(含源码 可是实时检测)https://blog.csdn.net/guyuealian/article/details/134070497
  • 笔尖笔帽检测4:C++实现笔尖笔帽检测算法(含源码 可是实时检测)https://blog.csdn.net/guyuealian/article/details/134070516


2. 手笔检测数据集

项目已经收集了四个手笔检测数据集(Hand-Pen Detection Dataset):Hand-voc1,Hand-voc2和Hand-voc3和Hand-Pen-voc,总共约7万张图片

(1)Hand-voc1

Hand-voc1手部检测数据集,该数据来源于国外开源数据集,大部分数据是室内摄像头摆拍的手部数据,不包含人体部分,每张图只含有一只手,分为两个子集:训练集(Train)和测试集(Test);其中训练集(Train)总数超过30000张图片,测试集(Test)总数2560张​​​​;图片已经使用labelme标注了手部区域目标框box,标注名称为hand,标注格式统一转换为VOC数据格式,可直接用于深度学习目标检测模型训练。

(2)Hand-voc2

Hand-voc2手部检测数据集,该数据来源于国内开源数据集,包含人体部分和多人的情况,每张图含有一只或者多只手,比较符合家庭书桌读写场景的业务数据集,数据集目前只收集了980张图片​​​;图片已经使用labelme标注了手部区域目标框box,标注名称为hand,标注格式统一转换为VOC数据格式,可直接用于深度学习目标检测模型训练。


(3)Hand-voc3

Hand-voc3手部检测数据集来源于国外​HaGRID手势识别数据集;原始HaGRID数据集十分庞大,约有55万张图片,包含了18种常见的通用手势;Hand-voc3数据集是从HaGRID数据集中,每种手势随机抽取2000张图片,总共包含18x2000=36000张图片数据​​​;标注格式统一转换为VOC数据格式,标注名称为hand,可直接用于深度学习目标检测模型训练。

关于HaGRID数据集请参考文章:HaGRID手势识别数据集使用说明和下载

(4)Hand-Pen-voc手笔检测数据集

Hand-Pen-voc手笔检测数据集,该数据是项目专门收集含有手部和书写工具笔的数据,大部分图片数据都含有一只手,并且是手握着笔练习写字的情况,其中书写工具笔的种类包含钢笔、铅笔、中性笔、记号笔等,十分符合学生写字/写作/做笔记/做作业的场景数据。数据集目前共收集了16457张图片​​​;图片已经使用labelme标注了两个目标框hand和hand_pen,标注格式统一转换为VOC数据格式,可直接用于深度学习目标检测模型训练。

  1. 目标框hand: 手部目标框,仅当只有手且没有握着笔的情况下才标注为hand
  2. 目标框hand_pen:手握笔目标框,手握着笔正常书写的目标框;由于手握着笔写字,为了囊括笔的区域,标注手部区域目标框box,会比实际的手部要大点点

(5)手笔目标框可视化效果

需要pip安装pybaseutils工具包,然后使用parser_voc显示手部目标框的绘图效果

pip install pybaseutils

import os
from pybaseutils.dataloader import parser_voc

if __name__ == "__main__":
    # 修改为自己数据集的路径
    filename = "/path/to/dataset/Hand-voc3/train.txt"
    class_name = ['hand','hand_pen']
    dataset = parser_voc.VOCDataset(filename=filename,
                                    data_root=None,
                                    anno_dir=None,
                                    image_dir=None,
                                    class_name=class_name,
                                    transform=None,
                                    use_rgb=False,
                                    check=False,
                                    shuffle=False)
    print("have num:{}".format(len(dataset)))
    class_name = dataset.class_name
    for i in range(len(dataset)):
        data = dataset.__getitem__(i)
        image, targets, image_id = data["image"], data["target"], data["image_id"]
        print(image_id)
        bboxes, labels = targets[:, 0:4], targets[:, 4:5]
        parser_voc.show_target_image(image, bboxes, labels, normal=False, transpose=False,
                                     class_name=class_name, use_rgb=False, thickness=3, fontScale=1.2)

 3. 笔尖笔帽关键点检测数据集

笔的种类繁多,材质颜色不一,但笔的外形基本是长条形状;项目没有直接标注笔的外接矩形框,而是将笔分为笔尖(笔头)和笔帽(笔尾)两个端点,这两个端点连接线,则表示整个笔身长度:

  • 笔尖/笔头关键点:位于笔尖突出尖端点位置,index=0
  • 笔帽/笔尾关键点:位于笔末端点中心点位置,index=1
  • 手握笔标注框: box包含笔和手的区域,一般出现在手握着笔书写的情况,不考虑单独出现笔的情况,标注名称为hand_pen

(1)dataset-pen2

dataset-pen2笔尖笔帽关键点检测数据集,改数据由Hand-Pen-voc手笔检测数据集扩充采集获得,标注了手握笔(hand_pen)的目标区域和笔的两端(笔尖和笔帽);大部分图片数据都含有一只手,并且是手握着笔练习写字的情况,其中书写工具笔的种类包含钢笔、铅笔、中性笔、记号笔等,十分符合学生写字/写作/做笔记/做作业的场景数据。数据集分为测试集Test和训练集Train,其中Test数据集有1075张图片,Train数据集有28603张图片;标注格式统一转换为COCO数据格式,可用于深度学习笔尖笔帽关键点检测模型训练

(2)笔尖笔帽关键点可视化效果

需要pip安装pybaseutils工具包,然后使用parser_coco_kps显示手部和笔尖关键点的绘图效果

pip install pybaseutils

import os
from pybaseutils.dataloader import parser_coco_kps

if __name__ == "__main__":
    # 修改为自己数据集json文件路径
    anno_file = "/path/to/dataset/dataset-pen2/train/coco_kps.json"
    class_name = []
    dataset = parser_coco_kps.CocoKeypoints(anno_file, image_dir="", class_name=class_name,shuffle=False)
    bones = dataset.bones
    for i in range(len(dataset)):
        data = dataset.__getitem__(i)
        image, boxes, labels, keypoints = data['image'], data["boxes"], data["label"], data["keypoints"]
        print("i={},image_id={}".format(i, data["image_id"]))
        parser_coco_kps.show_target_image(image, keypoints, boxes, colors=bones["colors"],
                                          skeleton=bones["skeleton"],thickness=1)



4. 数据集下载

数据集下载地址:笔尖笔帽检测数据集(含下载链接)

数据集内容包含:

  • 手笔检测数据集:包含Hand-voc1,Hand-voc2和Hand-voc3,Hand-Pen-voc手笔检测数据集总共约7万张图片;标注格式统一转换为VOC数据格式,手部目标框标注为hand,手握着笔的目标框标注为hand_pen,可用于深度学习手部目标检测模型算法开发。

  • 笔尖笔帽关键点检测数据集dataset-pen2,标注了手握笔(hand_pen)的目标区域和笔的两端(笔尖和笔帽);数据集分为测试集Test和训练集Train,其中Test数据集有1075张图片,Train数据集有28603张图片;标注格式统一转换为COCO数据格式,可用于深度学习笔尖笔帽关键点检测模型训练

  • 数据收集和标注是一件十分繁杂且又费时费力的工作,请尊重我的劳动成果

5. 笔尖笔帽关键点检测(Python/C++/Android)

本项目基于Pytorch深度学习框架,实现手写工具笔端(笔尖和笔帽)关键点检测,其中手笔检测采用YOLOv5模型,手写工具笔端(笔尖和笔帽)关键点检测是基于开源的HRNet进行改进,构建了整套笔尖笔帽关键点检测的训练和测试流程;为了方便后续模型工程化和Android平台部署,项目支持轻量化模型LiteHRNet和Mobilenet模型训练和测试,并提供Python/C++/Android多个版本

 Android笔尖笔帽关键点检测APP Demo体验:


6.特别版: 笔尖指尖检测

碍于篇幅,本文章只实现了笔尖笔帽关键点检测;实质上,要实现指尖点读或者笔尖点读功能,我们可能并不需要笔帽检测,而是需要实现笔尖+指尖检测功能;其实现方法与笔尖笔帽关键点检测类似。

下面是成功产品落地应用的笔尖+指尖检测算法Demo,其检测精度和速度性能都比笔尖笔帽检测的效果要好。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1203466.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【OpenCV(3)】linux arm aarch 是 opencv 交叉编译与使用

文章目录 1、直接找github 别人编译好的2、自主编译参考 3使用CMake检查 参考 1、直接找github 别人编译好的 测试很多,找到一个可用的。 https://github.com/dog-qiuqiu/libopencv 它用了超级模块! OpenCV的world模块也称为超级模块(supe…

gStore入选BenchCouncil年度世界开源系统杰出成果

“只以贡献分高下” BenchCouncil(国际测试委员会) 邀请了多位独立科学家 从2022至2023年度数万项开源相关成果中 遴选出了102项代表性成果 在确定主要贡献者的基础上 产生了开源领域 年度人才榜、机构榜、国家榜 共195人进入榜单 中国在“开源…

Marin说PCB之 PCB封装和原理图封装的藕断丝连

最近天气开始降温了,小编我不得不拿出珍藏多年的秋裤穿上了,就是走路不太方便,有点紧啊,可能是当时衣服尺码买小了吧,不可能是我吃胖了,这个绝对不可能。 话说小编我今年属实有点走霉运啊,下班和…

Camtasia2024全新中文版电脑录屏工具

在这个视频的大舞台上,每一帧都是你炫耀的机会,每一秒都是让观众瞪大眼睛的瞬间。现在,让我们一起飞跃时空,用更少的时间创作更多的惊喜吧! 就算你是个小白,毫无经验,别担心,Camtas…

Jmeter添加变量的四种方法

一、在样本中添加同请求一起发送的参数。根据服务器设置的数据类型,来添加不同类型的参数 二、用户定义的变量 1、创建:添加->配置元件->用户定义的变量 2、作用:当前的线程组内所有Sampler都可以引用变量,方便脚本更新&a…

2023年阿里云服务器最新日常价、活动价格、可使用优惠券金额及券后价格参考

阿里云服务器最新实际购买价格参考,轻量应用服务器2核2G3M带宽配置日常价720.00元/1年,最新活动价格为87元/1年,订单满300元以上即可使用满减优惠券,例如经济型e实例2核4G2M带宽日常价格为1802.40元,最新的活动价格为8…

从GPT定制到Turbo升级再到Assistants API,未来AI世界,你准备好了吗?

引言 在OpenAI DevDay发布会上,OpenAI再次震撼整个人工智能行业,为AI领域带来了重大的更新。CEO Sam Altman宣布推出了定制版本的ChatGPT,这意味着用户现在可以根据自己的需求打造个性化的GPT,并分享至GPT Store。这一消息对于受A…

C++网络编程库编写自动爬虫程序

首先&#xff0c;我们需要使用 C 的网络编程库来编写这个爬虫程序。以下是一个简单的示例&#xff1a; #include <iostream> #include <string> #include <curl/curl.h> #include <openssl/ssl.h>const char* proxy_host "duoip"; const in…

sd-wan网速测试:如何测试sd-wan网速?

SD-WAN是一种新兴的网络技术&#xff0c;可以显著提高企业的网络连接速度和性能。在当今的数字时代&#xff0c; 网络连接的质量对企业的运营至关重要。因此&#xff0c;sd-wan的网络速度测试尤为重要。 在进行sd-wan网速测试之前&#xff0c;我们首先需要知道什么是sd-wan-wa…

二十七、W5100S/W5500+RP2040树莓派Pico<iperf 测速示例>

文章目录 1 前言2 简介2 .1 什么是网络测速技术&#xff1f;2.2 网络测速技术的优点2.3 网络测速技术数据交互原理2.4 网络测速应用场景 3 WIZnet以太网芯片4 示例概述以及使用4.1 流程图4.2 准备工作核心4.3 连接方式4.4 主要代码概述4.5 结果演示 5 注意事项6 相关链接 1 前言…

全国不同级别高炉炼铁主要操作指标与分析

参考网址&#xff1a;https://www.zgltw.cn/liantiexinjishu/2020/0114/23584.html &#xff08;中国炼铁网&#xff09; 参考网址&#xff1a;https://www.zgltw.cn/liantiexinjishu/2020/0114/23584.html &#xff08;中国炼铁网 世界金属导报&#xff09;

Verilog基础:三段式状态机与输出寄存

相关阅读 Verilog基础https://blog.csdn.net/weixin_45791458/category_12263729.html 对于Verilog HDL而言&#xff0c;有限状态机(FSM)是一种重要而强大的模块&#xff0c;常见的有限状态机书写方式可以分为一段式&#xff0c;二段式和三段式&#xff0c;笔者强烈建议使用三…

JAVA弑神大阵之装饰者大阵

架构说明 构成简述&#xff1a; 总接口&#xff1a; 装饰者跟被装饰者都要来实现他&#xff08;或者理解成父接口&#xff09;&#xff0c;作用&#xff1a;对被装饰者做转换 被装饰者&#xff1a; 此处实现总接口。什么都不需要动&#xff0c;他只是被增强的功能&#xff0…

【ArcGIS Pro微课1000例】0030:ArcGIS Pro中自带晕渲地貌工具的妙用

在ArcGIS中,制作地貌晕渲效果通常的做法是先制作山体阴影效果,然后叠加在DEM的下面,再改变DEM的透明度来实现。而在ArcGIS Pro中自带了效果显著的晕渲地貌工具。 文章目录 一、晕渲地貌工具1. 符号系统2. 栅格函数二、山体阴影效果1. 工具箱2. 栅格函数打开ArcGIS Pro3.0,加…

监控和数据采集软件架构和详细设计

介绍 监控和数据采集软件通过提供实时监控、数据收集和分析功能&#xff0c;在各个行业中发挥着至关重要的作用。这些软件应用程序可帮助企业收集有价值的见解、优化流程并做出明智的决策。在本文中&#xff0c;我们将探讨监测和数据采集软件的软件架构、编程技术和详细设计规范…

『亚马逊云科技产品测评』活动征文|搭建带有“弱”图像处理功能的流媒体服务器

授权声明&#xff1a;本篇文章授权活动官方亚马逊云科技文章转发、改写权&#xff0c;包括不限于在 Developer Centre, 知乎&#xff0c;自媒体平台&#xff0c;第三方开发者媒体等亚马逊云科技官方渠道。 本文基于以下软硬件工具&#xff1a; aws ec2 frp-0.52.3 mediamtx-1.3…

链动2+1模式系统开发之区域代理深度解析

区域代理的保护机制&#xff1a;在链动商城系统里设定的代理有唯一性&#xff0c;每个省只有一个省代&#xff0c;每个市只有一个市代&#xff0c;每个区县只有一个区县代。这样也是保护每个代理的收益权益。 区域代理包含的权益类别&#xff1a;购物奖励折扣&#xff1b;区域实…

iOS群控手机App的开发难点是什么?

随着智能手机的普及&#xff0c;手机App已经成为我们生活中不可或缺的一部分&#xff0c;在众多手机操作系统中&#xff0c;iOS系统因其封闭性、安全性和流畅性而备受用户青睐&#xff0c;然而&#xff0c;开发一款针对iOS系统的手机App却并非易事。 一、开发语言与框架 iOS系…

Antv/G2 折线图 使用 DataSet 进行数据排序

DataSet 文档 G2 3.2 DataSet 文档 安装 浏览器引入 可以通过 <script> 标签引入在线资源或者本地脚本&#xff1a; <!-- 引入在线资源 --> <script src"https://unpkg.com/antv/data-set"></script><!-- 引入本地脚本 --> <sc…

解决pikachu中RCE中文乱码的问题

这个问题我在DVWA中的RCE栏目同样遇到过&#xff0c;今天在做pikachu的RCE的时候也遇到了&#xff0c;所以特此来解决一下这个问题&#xff0c;解决方法很简单&#xff0c;在源码中加入下一行代码。 $result iconv("GBK", "UTF-8", $result);加在68行前面…