微信公众号上线,搜索公众号小灰灰的FPGA,关注可获取相关源码,定期更新有关FPGA的项目以及开源项目源码,包括但不限于各类检测芯片驱动、低速接口驱动、高速接口驱动、数据信号处理、图像处理以及AXI总线等
1、循环码原理
循环码(cycle code),是一种线性分组码。具有线性码的一般性质外,还具有循环性。
循环性是指任一码组循环一位以后,仍然为该码中的一个码组。
即将最右端的一个码元移至左端,或者将最左端的一个码元移至右端,仍然为该码中的一个码组。
一个循环码的例子
长度n的循环码组的多项式
(2)循环码的运算
①码多项式的按模运算
模n(modulo-n)运算
若一个整数(integer)m,满足
Q为整数
在模n运算下,一个整数m等于它被n除得的余数(remainder)。
码多项式的按模运算,若任一多项式F(x)被一n次多项式N(x)除,得到商式(quotient)Q(x)和一个次数小于n的余式(residue)R(x)
注意:模2运算中,用加法代替了减法
一个重要结论:一个长为n的循环码必定为按模(x^n+1)运算的一个余式
②循环码的生成矩阵G
在循环码中,一个(n,k)码有2^k个不同码组。
g(x)必须是一个常数项不为“0”的(n-k)次多项式,而且这个g(x)还是(n,k)码中次数为(n-k)的唯一一个多项式。
以唯一的(n-k)次多项式g(x)为码生成多项式
可得到循环码的生成矩阵G
③任一(n,k)循环码的生成多项式
任一循环码多项式A(x)都是g(x)的倍式,即A(x)=h(x)×g(x)
生成多项式g(x)是一个(n-k)次多项式
x^k×g(x)是一个n次多项式
进行模(x^n+1)运算可得
(xk×g(x))/(xn+1) = Q(x)+A(x)/(x^n+1)
左端分子和分母都是n次多项式,故Q(x)=1
(xk×g(x))=(xn+1)+h(x)×g(x)
(xn+1)=g(x)×(xk+h(x))
生成多项式g(x)应该是(x^n+1)因子中的一个(n-k)次多项式
④循环码的编码方法
在编码时,根据给定的(n,k)值选定生成多项式g(x),即从(x^n+1)的因子中选一个(n-k)次多项式作为g(x)
具体编码规则:
设m(x)为信息码多项式,其次数小于k
x^(n-k)×m(x)的次数必定小于n,即在信息码后面附加上(n-k)个“0”
余式r(x)=g(x)/(x^(n-k)×m(x)),次数必定小于g(x)的次数(n-k)
余式r(x)与x^(n-k)×m(x)相加,得到码多项式
一个以(7,3)码为例分析:
第一步:
信息码为110,m(x)=x ^ 2+x
n=7,k=3,n-k=4
x ^ (n-k)×m(x)=x ^ 4×(x ^ 2+x)=x ^ 6+x ^ 5,即1100000
第二步:
x ^ n+1=x ^ 7+1=(x+1)×(x ^ 3+x ^ 2+1)×(x ^ 3+x+1)
循环码的生成多项式g(x)有两个:
(x+1)×(x ^ 3+x ^ 2+1)=x ^ 4+x ^ 2+x+1
(x+1)×(x ^ 3+x+1)=x ^ 4+x ^ 3+x ^ 2+1
用g(x)除x^(n-k)×m(x),得到商Q(x)和余式r(x)
(x ^ 6+x ^ 5)/(x ^ 4+x^ 2+x+1)=(x ^ 2+x+1)+(x ^ 2+1)/(x ^ 4+x ^ 2+x+1)
即Q(x)=(x2+x+1);r(x)=(x2+1)
第三步:
编码为:A(x)=x^(n-k)×m(x)+r(x)=1100000+101=1100101
⑤循环码的解码方法
接收端解码有两个要求:检错和纠错
通过余项是否为零来判断接收码组中有无错码
传输过程中为发送错误时,接收码组B(x)与发送码组A(x)相同,即B(x)必定能被g(x)整除;
传输过程中发生错误时,B(x)被g(x)除时,可能存在除不尽而有余项;
B(x)/g(x)=Q(x)+r(x)/g(x)
检错解码器的原理,一个除法电路和缓冲移位寄存器
除法电路与发送端编码器的除法电路相同,进行B(x)/g(x)的运算
余项为“0”,将暂存于缓冲器中的接收码组发送到解码器的输出端
余项不为“0”,将缓存器中的接收码组删除,并向发送端发出一个重发指令,要求重发一次该码组
捕错解码法,具体解码规则:
第一步:
用生成多项式g(x)除接收码组B(x),得出余式r(x)
第二步:
按余式r(x),用查表法或其他计算获得错误图样E(x),确定错码的位置
第三步:
从B(x)中减去E(x),得到已经纠正错码的原发送码组A(x)