代码随想录算法训练营第四十九天丨 动态规划part12

news2025/1/11 5:53:07

309.最佳买卖股票时机含冷冻期

思路

相对于动态规划:122.买卖股票的最佳时机II (opens new window),本题加上了一个冷冻期

在动态规划:122.买卖股票的最佳时机II (opens new window)中有两个状态,持有股票后的最多现金,和不持有股票的最多现金。

动规五部曲,分析如下:

  1. 确定dp数组以及下标的含义

dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]。

其实本题很多人搞的比较懵,是因为出现冷冻期之后,状态其实是比较复杂度,例如今天买入股票、今天卖出股票、今天是冷冻期,都是不能操作股票的。

具体可以区分出如下四个状态:

  • 状态一:持有股票状态(今天买入股票,或者是之前就买入了股票然后没有操作,一直持有)
  • 不持有股票状态,这里就有两种卖出股票状态
    • 状态二:保持卖出股票的状态(两天前就卖出了股票,度过一天冷冻期。或者是前一天就是卖出股票状态,一直没操作)
    • 状态三:今天卖出股票
  • 状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!

j的状态为:

  • 0:状态一
  • 1:状态二
  • 2:状态三
  • 3:状态四

很多题解为什么讲的比较模糊,是因为把这四个状态合并成三个状态了,其实就是把状态二和状态四合并在一起了。

从代码上来看确实可以合并,但从逻辑上分析合并之后就很难理解了,所以我下面的讲解是按照这四个状态来的,把每一个状态分析清楚。

如果大家按照代码随想录顺序来刷的话,会发现 买卖股票最佳时机 1,2,3,4 的题目讲解中

  • 动态规划:121.买卖股票的最佳时机(opens new window)
  • 动态规划:122.买卖股票的最佳时机II(opens new window)
  • 动态规划:123.买卖股票的最佳时机III(opens new window)
  • 动态规划:188.买卖股票的最佳时机IV(opens new window)

「今天卖出股票」是没有单独列出一个状态的归类为「不持有股票的状态」,而本题为什么要单独列出「今天卖出股票」 一个状态呢?

因为本题有冷冻期,而冷冻期的前一天,只能是 「今天卖出股票」状态,如果是 「不持有股票状态」那么就很模糊,因为不一定是 卖出股票的操作。

注意这里的每一个状态,例如状态一,是持有股票股票状态并不是说今天一定就买入股票,而是说保持买入股票的状态即:可能是前几天买入的,之后一直没操作,所以保持买入股票的状态

  • 确定递推公式

达到买入股票状态(状态一)即:dp[i][0],有两个具体操作:

  • 操作一:前一天就是持有股票状态(状态一),dp[i][0] = dp[i - 1][0]
  • 操作二:今天买入了,有两种情况
    • 前一天是冷冻期(状态四),dp[i - 1][3] - prices[i]
    • 前一天是保持卖出股票的状态(状态二),dp[i - 1][1] - prices[i]

那么dp[i][0] = max(dp[i - 1][0], dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]);

达到保持卖出股票状态(状态二)即:dp[i][1],有两个具体操作:

  • 操作一:前一天就是状态二
  • 操作二:前一天是冷冻期(状态四)

dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);

达到今天就卖出股票状态(状态三),即:dp[i][2] ,只有一个操作:

昨天一定是持有股票状态(状态一),今天卖出

即:dp[i][2] = dp[i - 1][0] + prices[i];

达到冷冻期状态(状态四),即:dp[i][3],只有一个操作:

昨天卖出了股票(状态三)

dp[i][3] = dp[i - 1][2];

综上分析,递推代码如下:

dp[i][0] = Math.max(dp[i-1][0],Math.max(dp[i-1][1] - prices[i],dp[i-1][3]-prices[i]));
dp[i][1] = Math.max(dp[i-1][1],dp[i-1][3]);
dp[i][2] = dp[i-1][0]+prices[i];
dp[i][3] = dp[i-1][2];
  • dp数组如何初始化

这里主要讨论一下第0天如何初始化。

如果是持有股票状态(状态一)那么:dp[0][0] = -prices[0],一定是当天买入股票。

保持卖出股票状态(状态二),这里其实从 「状态二」的定义来说 ,很难明确应该初始多少,这种情况我们就看递推公式需要我们给他初始成什么数值。

如果i为1,第1天买入股票,那么递归公式中需要计算 dp[i - 1][1] - prices[i] ,即 dp[0][1] - prices[1],那么大家感受一下 dp[0][1] (即第0天的状态二)应该初始成多少,只能初始为0。想一想如果初始为其他数值,是我们第1天买入股票后 手里还剩的现金数量是不是就不对了。

今天卖出了股票(状态三),同上分析,dp[0][2]初始化为0,dp[0][3]也初始为0。

  • 确定遍历顺序

从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。

  • 举例推导dp数组

以 [1,2,3,0,2] 为例,dp数组如下:

309.最佳买卖股票时机含冷冻期

最后结果是取 状态二,状态三,和状态四的最大值,不少同学会把状态四忘了,状态四是冷冻期,最后一天如果是冷冻期也可能是最大值。

代码如下:

class Solution {
    public int maxProfit(int[] prices) {
        int[][] dp = new int[prices.length][4];
        /*
        0:持股
        1:保持卖出股票
        2:卖出股票
        3:冷冻期
         */
        dp[0][0] = -prices[0];
        for (int i = 1; i < prices.length; i++) {
            dp[i][0] = Math.max(dp[i-1][0],Math.max(dp[i-1][1] - prices[i],dp[i-1][3]-prices[i]));
            dp[i][1] = Math.max(dp[i-1][1],dp[i-1][3]);
            dp[i][2] = dp[i-1][0]+prices[i];
            dp[i][3] = dp[i-1][2];
        }
        return Math.max(dp[prices.length-1][1],Math.max(dp[prices.length-1][2],dp[prices.length-1][3]));
    }
}
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

#总结

这次把冷冻期这道题目,讲的很透彻了,细分为四个状态,其状态转移也十分清晰,建议大家都按照四个状态来分析,如果只划分三个状态确实很容易给自己绕进去。


714.买卖股票的最佳时机含手续费

思路

本题贪心解法:贪心算法:买卖股票的最佳时机含手续费(opens new window)

性能是:

  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

本题使用贪心算法并不好理解,也很容易出错,那么我们再来看看是使用动规的方法如何解题。

相对于动态规划:122.买卖股票的最佳时机II (opens new window),本题只需要在计算卖出操作的时候减去手续费就可以了,代码几乎是一样的。

唯一差别在于递推公式部分,所以本篇也就不按照动规五部曲详细讲解了,主要讲解一下递推公式部分。

这里重申一下dp数组的含义:

dp[i][0] 表示第i天持有股票所省最多现金。 dp[i][1] 表示第i天不持有股票所得最多现金

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]

所以:dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);

在来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金,注意这里需要有手续费了即:dp[i - 1][0] + prices[i] - fee

所以:dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);

本题和动态规划:122.买卖股票的最佳时机II (opens new window)的区别就是这里需要多一个减去手续费的操作

以上分析完毕,代码如下:

class Solution {
    public int maxProfit(int[] prices, int fee) {
        int[][] dp = new int[prices.length][2];
        /*
        dp[i][0]:持有股票
        dp[i][1]:不持有股票
         */
        dp[0][0] = -prices[0];
        int num = 0;
        for (int i = 1; i < prices.length; i++) {
            dp[i][0]= Math.max(dp[i-1][0],dp[i-1][1]-prices[i]);
            dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0]+prices[i] - fee);
        }
        return Math.max(dp[prices.length-1][0],dp[prices.length-1][1]);
    }
}

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1198963.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

头歌答案--爬虫实战

目录 urllib 爬虫 第1关&#xff1a;urllib基础 任务描述 第2关&#xff1a;urllib进阶 任务描述 requests 爬虫 第1关&#xff1a;requests 基础 任务描述 第2关&#xff1a;requests 进阶 任务描述 网页数据解析 第1关&#xff1a;XPath解析网页 任务描述 第…

算法导论6:摊还分析,显式与隐式

P258 摊还分析概念 聚合分析&#xff0c;利用它&#xff0c;我们证明对于n&#xff0c;一个n个操作的序列最坏情况下的花费的总时间为T(n)&#xff0c;因此&#xff0c;在最坏情况下&#xff0c;每个操作的平均代价&#xff08;摊还代价&#xff09;为T(n)/n 举了例子来形容这…

asp.net 在线音乐网站系统VS开发sqlserver数据库web结构c#编程Microsoft Visual Studio

一、源码特点 asp.net 在线音乐网站系统是一套完善的web设计管理系统&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为vs2010&#xff0c;数据库为sqlserver2008&#xff0c;使用c#语言 开发 asp.net 在线音乐网站系统1 应用…

pyorch Hub 系列#4:PGAN — GAN 模型

一、主题描述 2014 年生成对抗网络的诞生及其对任意数据分布进行有效建模的能力席卷了计算机视觉界。两人范例的简单性和推理时令人惊讶的快速样本生成是使 GAN 成为现实世界中实际应用的理想选择的两个主要因素。 然而&#xff0c;在它们出现后的很长一段时间内&#xff0c;GA…

Clickhouse学习笔记(8)—— 建表优化

数据类型 时间字段 建表时能用数值型或日期时间类型&#xff08;DateTime&#xff09;表示的字段就不要用字符串 因为clickhouse进行分区时一般使用时间字段来进行分区&#xff0c;而将时间字段使用DateTime表示&#xff0c;不需要经过函数转换处理&#xff0c;执行效率高、…

开放领域问答机器人2——开发流程和方案

开放领域问答机器人是指在任何领域都能够回答用户提问的智能机器人。与特定领域问答机器人不同&#xff0c;开放领域问答机器人需要具备更广泛的知识和更灵活的语义理解能力&#xff0c;以便能够回答各种不同类型的问题。 开发开放领域问答机器人的流程和方案可以包括以下步骤…

【视觉SLAM十四讲学习笔记】第二讲——初识SLAM

专栏系列文章如下&#xff1a; 【视觉SLAM十四讲学习笔记】第一讲 一个机器人&#xff0c;如果想要探索某一块区域&#xff0c;它至少需要知道两件事&#xff1a; 我在什么地方——定位周围环境是什么样——建图 一方面需要明白自身的状态&#xff08;即位置&#xff09;&#…

最详细ChatGPT+AI绘画+企业知识库+视频去水印系统源码搭建流程,手把手教你搭建

一、系统介绍 这款源码搭载了强大的AI问答功能&#xff0c;是基于目前最强大AI大语言模型ChatGPT进行开发的Ai智能问答系统&#xff0c;并使用stablediffusion加最新的comfyui作为底层技术的绘画系统,使用comfyui的api接口&#xff0c;可以更灵活的定制自己的绘画工作流&#…

2.2 CE修改器:未知数值扫描

本关需要扫描未知数只扫描&#xff0c;要在不知道初始值的情况下找到一个在0到500之间的数值。首先&#xff0c;选择“未知的初始值”扫描方式&#xff0c;在数值类型中选择 4 字节&#xff0c;并点击“首次扫描”以开始扫描。扫描结束后&#xff0c;点击“打我”按钮进行一些操…

Java基础(第六期):Java基础巩固、逢七跳过、数组求和、判断数组是否相等、数组逆置、元素位置查找、评委打分、随机产生验证码

Java基础专栏【点击跳转学习】 Java基础&#xff08;第六期&#xff09;&#xff1a;对前五期的综合练习 文章目录 综合练习巩固JAVA基础第六期一、逢 7 跳过二、数组元素求和三、判断两个数组元素是否相同四、查找元素在数组中的索引五、数组元素反转使用for循环的实现方式一、…

【LeetCode刷题-二分查找】--278.第一个错误的版本

278.第一个错误的版本 /* The isBadVersion API is defined in the parent class VersionControl.boolean isBadVersion(int version); */public class Solution extends VersionControl {public int firstBadVersion(int n) {int left 1,right n;while(left < right){int…

webpack工作原理

目录 合并代码模块化webpack 的打包webpack 的结构webpack 的源码addEntry 和 _addModuleChainbuildModuleCompilation 的钩子产出构建结果 了解 webpack 实现原理&#xff0c;掌握 webpack 基础的工作流程&#xff0c;在平时使用 webpack 遇见问题时&#xff0c;能够帮助我们洞…

Doris学习--1、Doris简介、操作Doris、Doris架构(数据模型)

星光下的赶路人star的个人主页 心之所向&#xff0c;剑之所往 文章目录 1、Doris简介1.1 快速开始1.2 安装配置1.2.1 应知前提1.2.2 配置Doris1.2.2.0 配置前提1.2.2.1 配置FE&#xff08;Frontend&#xff09;1.2.2.2 启动FE1.2.2.3 连接FE1.2.2.4 停止FE1.2.2.5 配置BE&#…

【函数讲解】pygmo中的函数 fast_non_dominated_sorting() + 利用支配关系,学习一个SVM分类器,将解分为两类

这个函数是用来执行非支配排序的&#xff0c;可以分层构建Pareto&#xff0c;并返回每一层的解以及每个解支配其他解的索引、解被其他解支配的次数、解所在的非支配层级。这个函数对这些解进行非支配排序&#xff0c;并返回四个数组&#xff1a;ndf, dl, dc, 和 ndr。 ndf (Non…

2.3 CE修改器:浮点数扫描

本关需要使用 Cheat Engine 工具对浮点数进行扫描&#xff0c;完成修改任务。浮点数是一种带有小数点的数值&#xff0c;通过“浮点数”扫描方式进行修改。本关中&#xff0c;健康值为单精度浮点数&#xff0c;弹药值为双精度浮点数&#xff0c;需要将这两项数值都修改为 5000 …

InSAR形变监测方法与研究进展(朱建军,中南大学)

文章目录 摘要引言InSARInSAR原理SAR卫星 InSAR监测技术D-InSARMT-InSARPS-InSARSBAS-InSARDS-InSAR&#xff08;Distributed Scatterer InSAR&#xff09;MAI&#xff08;Multi-Aperture InSAR, 多孔径InSAR&#xff09; InSAR形变监测应用与发展城市沉降监测矿山形变监测地震…

深度探究深度学习常见数据类型INT8 FP32 FP16的区别即优缺点

定点和浮点都是数值的表示&#xff08;representation&#xff09;&#xff0c;它们区别在于&#xff0c;将整数&#xff08;integer&#xff09;部分和小数&#xff08;fractional&#xff09;部分分开的点&#xff0c;点在哪里。定点保留特定位数整数和小数&#xff0c;而浮点…

用互联网思维打造物流网(别人笑我太疯癫,我把自己当成仙)

引言 最近在写网络相关文章&#xff0c;在类比互联网与物流网时发现他们有很多相似之处。 互联网传输的是数据&#xff0c;物流网传输的是物品&#xff0c;功能相似&#xff0c;都是用于传输。 互联网在传输数据时&#xff0c;通过路由选择最佳传输路线&#xff1b;物流在运…

微信小程序数据交互和缓存

目录 前言&#xff1a; 数据交互 1. 发起网络请求 2. WebSocket 2.1实时数据库 3. 微信支付 数据缓存 1. 页面级缓存 2. 内存级缓存 3. 数据缓存策略 优化用户体验 总结 前言&#xff1a; 在开发微信小程序时&#xff0c;数据交互和缓存是非常重要的方面。本文将介…