时序预测 | MATLAB实现WOA-CNN-BiGRU-Attention时间序列预测(SE注意力机制)

news2025/1/13 2:53:23

时序预测 | MATLAB实现WOA-CNN-BiGRU-Attention时间序列预测(SE注意力机制)

目录

    • 时序预测 | MATLAB实现WOA-CNN-BiGRU-Attention时间序列预测(SE注意力机制)
      • 预测效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
2
3
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.MATLAB实现WOA-CNN-BiGRU-Attention时间序列预测(SE注意力机制),鲸鱼优化卷积双向门控循环单元注意力时间序列预测;
2.运行环境为Matlab2021b;
3.data为数据集,excel数据,单变量时间序列预测,
main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;
5.鲸鱼算法优化学习率,隐藏层节点,正则化系数;

模型描述

注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。

1
2

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现WOA-CNN-BiGRU-Attention时间序列预测(SE注意力机制)
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)

fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);

[Best_score,Best_pos,curve]=WOA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数
 
%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [
    sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]
    sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [
    convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图
    reluLayer("Name", "relu_1")                                          % Relu 激活层

lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中

tempLayers = [
    sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层
    flattenLayer("Name", "flatten")                                  % 网络铺平层
       fullyConnectedLayer(num_class, "Name", "fc")                                      % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); 
                                                                     % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入

%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法
    'MaxEpochs', 500,...                 % 最大训练次数 
    'InitialLearnRate', best_lr,...          % 初始学习率为0.001
    'L2Regularization', best_l2,...         % L2正则化参数
    'LearnRateSchedule', 'piecewise',...  % 学习率下降
    'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1
    'Shuffle', 'every-epoch',...          % 每次训练打乱数据集
    'ValidationPatience', Inf,...         % 关闭验证
    'Plots', 'training-progress',...      % 画出曲线
    'Verbose', false);

%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1198253.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【黑客】学习笔记(小白自学)

一、黑客是什么 原是指热心于计算机技术,水平高超的电脑专家,尤其是程序设计人员。但后来,黑客一词已被用于泛指那些专门利用电脑网络搞破坏或者恶作剧的家伙。 二、学习黑客技术的原因 其实,网络信息空间安全已经成为海陆空之…

Lenovo联想小新Air-14笔记本2021款AMD锐龙ALC版(82LM)原装出厂Win10镜像和Windows11预装OEM系统

下载链接:https://pan.baidu.com/s/1akLkXM2HIg3eO76jqM-LVA?pwdxvo6 提取码:xvo6 系统自带所有驱动、出厂主题壁纸、系统属性专属LOGO标志、Office办公软件、联想电脑管家等预装程序 所需要工具:16G或以上的U盘 文件格式:…

Haproxy实现七层负载均衡

目录 Haproxy概述 haproxy算法: Haproxy实现七层负载 ①部署nginx-server测试页面 ②(主/备)部署负载均衡器 ③部署keepalived高可用 ④增加对haproxy健康检查 ⑤测试 Haproxy概述 haproxy---主要是做负载均衡的7层,也可以做4层负载均衡 apache也可…

基于Python+OpenCV+SVM车牌识别系统-车牌预处理系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介简介系统流程系统优势 二、功能三、系统四. 总结 一项目简介 ## PythonOpenCVSVM车牌识别系统介绍 简介 PythonOpenCVSVM车牌识别系统是一种基于计算机视…

IIS前端服务和代理

前端服务可以用nginx和IIS开启,windows自带IIS方便管理一点。其实用docker的nginx更方便管理。 记录一下IIS的安装和开启服务过程 1、打开控制面板点击程序,再点击启用或关闭windows功能。 2、 点击左侧启用或关闭Windows功能。 3、把框框中全选上之后点…

快速走进通信世界 --- 基础知识扫盲

想不到吧,家人们,博主好久没来更新文章了,而且这次更新的是关于通信工程的文章。博主确实以前一直更新关于编程的文章,只不过最近在学习一些新的知识,以后有机会了我还是会继续更新一些编程技术文章的。不过每一门技术…

C++学习笔记(一):安装VisualStudio和Vcpkg

VisualStudio安装 error C4996: ‘scanf’: This function or variable may be unsafe. Consider using scanf_s instead. To disable deprecation, use _CRT_SECURE_NO_WARNINGS. See online help for details. #include <stdio.h>int main() {printf("hello"…

第一百六十八回 Navigation组件

文章目录 1. 概念介绍2. 使用方法3. 代码与效果3.1 示例代码3.2 运行效果 4. 内容总结 我们在上一章回中介绍了"如何修改按钮的形状"相关的内容&#xff0c;本章回中将 介绍NavigationBar组件.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介绍 我们在本…

idea配置tomcat参数,防止nvarchar保存韩文、俄文、日文等乱码

描述下我的场景&#xff1a; 数据库服务器在远程机器上&#xff0c;数据库使用的Oracle&#xff0c;字符集是ZHS16GBK&#xff0c;但保存韩文、俄文、日文等字段A的数据类型是nvarchar(120)&#xff0c;而nvarchar使用的是Unicode 编码&#xff0c;有点乱。。 遇到的问题&…

CSS特效006:绘制不断跳动的心形

css实战中&#xff0c;怎么绘制不断跳动的心形呢&#xff1f; 绘图的时候主要用到了transform: rotate(-45deg); transform-origin: 0 100%; transform: rotate(45deg); transform-origin: 100% 100%; 动画使用keyframes 时间上为infinite。 效果图 源代码 /* * Author: 大剑…

javaEE案例,前后端交互,计算机和用户登录

加法计算机,前端的代码如下 : 浏览器访问的效果如图 : 后端的代码如下 再在浏览器进行输入点击相加,就能获得结果 开发中程序报错,如何定位问题 1.先定位前端还是后端(通过日志分析) 1)前端 : F12 看控制台 2)后端 : 接口,控制台日志 举个例子: 如果出现了错误,我们就在后端…

C++学习---信号处理机制、中断、异步环境

文章目录 前言信号处理signal()函数关于异步环境 信号处理函数示例raise()函数 前言 信号处理 关于信号&#xff0c;信号是一种进程间通信的机制&#xff0c;用于在程序执行过程中通知进程发生了一些事件。在Unix和类Unix系统中&#xff0c;信号是一种异步通知机制&#xff0c…

MySQL Command Line Client 运行闪退问题解决,缺少my.ini文件

MySQL Command Line Client 运行闪退问题解决&#xff1a; 问题排查&#xff1a; 1.找到Command Line Client的路径位置&#xff0c;并查看属性&#xff0c;步骤截图&#xff1a; 查看属性&#xff1a; 查看属性中的目标路径&#xff1a; 2.进入属性中的目标路径&#xff0c;…

CSS布局001:画各种三角形

CSS实战中&#xff0c;有很多时候采用css来绘制三角形&#xff0c;而不是采用图片的方式&#xff0c;这样有利于快速成型&#xff0c;不用多调用服务器数据。 CSS代码 上三角 #triangle-up {width: 0;height: 0;border-left: 50px solid transparent;border-right: 50px solid…

Spring -Spring之循环依赖源码解析

什么是循环依赖&#xff1f; 很简单&#xff0c;就是A对象依赖了B对象&#xff0c;B对象依赖了A对象。 比如&#xff1a; // A依赖了B class A{public B b; }// B依赖了A class B{public A a; }那么循环依赖是个问题吗&#xff1f; 如果不考虑Spring&#xff0c;循环依赖并…

2023.11.11 关于 Spring 中 Bean 的作用域

目录 Bean 的作用域 作用域的定义 Singleton&#xff08;单例作用域&#xff09; Prototype&#xff08;原型作用域&#xff09; Request&#xff08;请求作用域&#xff09; Session&#xff08;会话请求&#xff09; Application&#xff08;全局作用域&#xff09; …

计算机毕业设计 基于Springboot的影院购票管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

立冬特辑-----链表OJ题优选合集~~

目录 ​​​​​​​前言&#x1f333; 1.链表中倒数第k个结点&#x1f338; 1.1 思路 1.2 代码 2. 链表的回文结构&#x1fab8; 2.1 思路 2.2 代码 3.相交链表&#x1f32a;️ 3.1 思路 3.2 代码 4.环形链表I&#x1f30a;&#x1f6f3;️ 4.1 思路 4.2 代码 4…

大数据治理——为业务提供持续的、可度量的价值(二)

第二部分&#xff1a;元数据集成体系结构 在明确了元数据管理策略后需要确定实现该管理策略所需的技术体系结构&#xff0c;即元数据集成体系结构。元数据集成体系结构涉及到多个概念&#xff0c;如元模型、元-元模型、公共仓库元模型&#xff08;CWM&#xff09;等&#xff0…

人工智能时代,掌握未来技术趋势,成为领先者

人工智能时代&#xff0c;掌握未来技术趋势&#xff0c;成为领先者 摘要&#xff1a;本文将从热门技术趋势、技术应用场景、技术实践案例、技术发展趋势等角度进行探讨&#xff0c;帮助读者更好地了解技术前沿动态&#xff0c;为自身职业发展提供指导。在人工智能时代&#xf…