J6打卡——pytorch实现ResNeXt-50实现猴痘检测

news2025/3/11 6:26:47
  •    🍨 本文为🔗365天深度学习训练营中的学习记录博客
  • 🍖 原作者:K同学啊

1.检查GPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets

import os,PIL,pathlib

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device

​​​​​​

2.查看数据

import os,PIL,random,pathlib

data_dir = 'data/45-data/'
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[2] for path in data_paths]
classeNames

​​​

3.划分数据集

total_datadir = 'data/45-data'

train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

train_size,test_size

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)

for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

​​​​​​​​​

​​​​​

4.创建模型

import torch
import torch.nn as nn
import torch.nn.functional as F

class GroupedConvolutionBlock(nn.Module):
    def __init__(self, in_channels, out_channels, strides, groups):
        super(GroupedConvolutionBlock, self).__init__()
        self.groups = groups
        self.g_channels = out_channels // groups
        self.conv_layers = nn.ModuleList([
            nn.Conv2d(self.g_channels, self.g_channels, kernel_size=3, stride=strides, padding=1, bias=False)
            for _ in range(groups)
        ])
        self.bn = nn.BatchNorm2d(out_channels, eps=1.001e-5)
        self.relu = nn.ReLU()

    def forward(self, x):
        group_list = []
        # 分组进行卷积
        for c in range(self.groups):
            # 分组取出数据
            x_group = x[:, c * self.g_channels:(c + 1) * self.g_channels, :, :]
            # 分组进行卷积
            x_group = self.conv_layers[c](x_group)
            # 存入list
            group_list.append(x_group)
        # 合并list中的数据
        group_merge = torch.cat(group_list, dim=1)
        x = self.bn(group_merge)
        x = self.relu(x)
        return x

class Block(nn.Module):
    def __init__(self, in_channels, filters, strides=1, groups=32, conv_shortcut=True):
        super(Block, self).__init__()
        self.conv_shortcut = conv_shortcut

        if conv_shortcut:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channels, filters * 2, kernel_size=1, stride=strides, bias=False),
                nn.BatchNorm2d(filters * 2, eps=1.001e-5)
            )
        else:
            self.shortcut = nn.Identity()

        self.conv1 = nn.Conv2d(in_channels, filters, kernel_size=1, stride=1, bias=False)
        self.bn1 = nn.BatchNorm2d(filters, eps=1.001e-5)
        self.relu1 = nn.ReLU()

        self.grouped_conv = GroupedConvolutionBlock(filters, filters, strides, groups)

        self.conv2 = nn.Conv2d(filters, filters * 2, kernel_size=1, stride=1, bias=False)
        self.bn2 = nn.BatchNorm2d(filters * 2, eps=1.001e-5)
        self.relu2 = nn.ReLU()

    def forward(self, x):
        shortcut = self.shortcut(x)

        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu1(x)

        x = self.grouped_conv(x)

        x = self.conv2(x)
        x = self.bn2(x)

        x = x + shortcut
        x = self.relu2(x)
        return x

class Stack(nn.Module):
    def __init__(self, in_channels, filters, blocks, strides, groups=32):
        super(Stack, self).__init__()
        self.blocks = nn.ModuleList()
        self.blocks.append(Block(in_channels, filters, strides, groups, conv_shortcut=True))
        for _ in range(1, blocks):
            self.blocks.append(Block(filters * 2, filters, strides=1, groups=groups, conv_shortcut=False))

    def forward(self, x):
        for block in self.blocks:
            x = block(x)
        return x

class ResNext50(nn.Module):
    def __init__(self, input_shape, num_classes):
        super(ResNext50, self).__init__()
        self.conv1 = nn.Conv2d(input_shape[0], 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64, eps=1.001e-5)
        self.relu1 = nn.ReLU()
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.stack1 = Stack(64, 128, 2, 1)
        self.stack2 = Stack(256, 256, 3, 2)
        self.stack3 = Stack(512, 512, 5, 2)
        self.stack4 = Stack(1024, 1024, 2, 2)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(2048, num_classes)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu1(x)
        x = self.maxpool(x)

        x = self.stack1(x)
        x = self.stack2(x)
        x = self.stack3(x)
        x = self.stack4(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)
        return x

from torchsummary import summary

model=ResNext50(input_shape=(224,224,3),num_classes=1000)

model = ResNext50(input_shape=(3, 224, 224), num_classes=1000)

# 将模型移动到GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# 打印模型摘要
summary(model, input_size=(3, 224, 224))

​​

5.编译及训练模型
 

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

​​

6.结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

from datetime import datetime
current_time = datetime.now() # 获取当前时间

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

​​​

​​​​​7.预测图片

from PIL import Image 

classes = list(total_data.class_to_idx)

def predict_one_image(image_path, model, transform, classes):
    
    test_img = Image.open(image_path).convert('RGB')
    # plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)

    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')

# 预测训练集中的某张照片
predict_one_image(image_path='data/45-data/Others/NM01_01_05.jpg', 
                  model=model, 
                  transform=train_transforms, 
                  classes=classes)

​​​​

总结:

        在这次深度学习训练营的学习中,我通过实现ResNeXt-50模型的构建、训练和评估,深入理解了深度学习模型的构建流程和优化方法。以下是我的学习总结:

1. GPU检查与数据准备

  • GPU检查:通过torch.cuda.is_available()检查GPU是否可用,确保模型能够在GPU上运行以加速训练。

  • 数据准备:使用torchvision.datasets.ImageFolder加载数据集,并通过transforms对数据进行预处理,包括调整大小、转换为张量和标准化处理。

2. 模型构建

  • 分组卷积块:实现了分组卷积块GroupedConvolutionBlock,通过将输入特征图分组并分别进行卷积操作,最后合并结果。这种方式增加了模型的表达能力。

  • 残差单元:定义了残差单元Block,包含1x1卷积、分组卷积和1x1卷积,并通过残差连接将输入与输出相加,避免了梯度消失问题。

  • 堆叠残差单元:通过Stack类堆叠多个残差单元,构建了ResNeXt-50模型的核心部分。

  • ResNeXt-50模型:整合了卷积层、批归一化层、激活函数和残差单元,构建了完整的ResNeXt-50模型。

3. 模型训练与评估

  • 损失函数与优化器:使用交叉熵损失函数nn.CrossEntropyLoss()和随机梯度下降优化器torch.optim.SGD

  • 训练循环:实现了训练和测试循环,记录了每个epoch的训练和测试准确率及损失。

  • 结果可视化:通过Matplotlib绘制了训练和测试的准确率及损失曲线,直观地展示了模型的训练效果。

4. 模型预测

  • 单张图片预测:实现了单张图片的预测功能,通过加载图片并进行预处理,使用训练好的模型进行预测并输出结果。

5. 学习收获

  • 深入理解ResNeXt:通过实现ResNeXt-50模型,深入理解了分组卷积和基数(cardinality)的概念,以及它们在提升模型表达能力中的作用。

  • PyTorch实践:通过实际代码编写,熟悉了PyTorch的基本操作,包括模型定义、数据加载、训练循环和结果可视化。

  • 问题解决能力:在实现过程中遇到了一些问题,如GPU检查、数据预处理和模型调试,通过查阅文档和调试代码,提升了问题解决能力。

6. 改进方向

  • 模型优化:可以尝试调整学习率、批量大小等超参数,或者使用更复杂的优化器(如Adam)来进一步提升模型性能。

  • 数据增强:在数据预处理阶段引入更多的数据增强技术,如随机裁剪、旋转等,以提高模型的泛化能力。

  • 模型扩展:可以尝试实现其他ResNeXt变体(如ResNeXt-101)或其他先进的深度学习模型(如EfficientNet)。

对比:

1. ResNeXt-50
   核心思想:
      ResNeXt 是 ResNet 的扩展版本,引入了分组卷积(Grouped Convolution)和基数(Cardinality)的概念。
      基数表示分组卷积的分支数量,通过增加基数(如32组)来提升模型的表达能力,同时保持计算复杂度。
   结构特点:
     使用分组卷积代替传统的卷积操作,将输入特征图分为多个组,每组独立进行卷积,最后合并结果。
     残差连接仍然保留,避免了梯度消失问题。

 2. ResNet-50 V2
  核心思想:
     ResNet-50 V2 是 ResNet-50 的改进版本,主要优化了残差块的结构。
     在残差块中,将批归一化(Batch Normalization)和激活函数(ReLU)的顺序调整为“预激活”(即先进行批归一化和激活,再进行卷积)。
   结构特点:
     使用“预激活”残差块,使得梯度流动更加顺畅。
     保留了 ResNet 的基本结构,包括残差连接和瓶颈设计(1x1-3x3-1x1卷积)。
3. DenseNet
   核心思想:
     DenseNet 提出了密集连接(Dense Connection)**的概念,即每一层的输入来自前面所有层的输出。
     通过密集连接,增强了特征复用,减少了参数数量。
   结构特点:
     每一层的输出会与后续所有层的输入进行拼接(concatenation)。
     使用过渡层(Transition Layer)**来控制特征图的大小和通道数。
   

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2313077.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue+dhtmlx-gantt 实现甘特图-快速入门【甘特图】

文章目录 一、前言二、使用说明2.1 引入依赖2.2 引入组件2.3 引入dhtmlx-gantt2.4 甘特图数据配置2.5 初始化配置 三、代码示例3.1 Vue2完整示例3.2 Vue3 完整示例 四、效果图 一、前言 dhtmlxGantt 是一款功能强大的甘特图组件,支持 Vue 3 集成。它提供了丰富的功…

音视频入门基础:RTP专题(16)——RTP封装音频时,音频的有效载荷结构

一、引言 《RFC 3640》和《RFC 6416》分别定义了两种对MPEG-4流的RTP封包方式,这两个文档都可以从RFC官网下载: RFC Editor 本文主要对《RFC 3640》中的音频打包方式进行简介。《RFC 3640》总共有43页,本文下面所说的“页数”是指在pdf阅读…

超分之DeSRA

Desra: detect and delete the artifacts of gan-based real-world super-resolution models.DeSRA:检测并消除基于GAN的真实世界超分辨率模型中的伪影Xie L, Wang X, Chen X, et al.arXiv preprint arXiv:2307.02457, 2023. 摘要 背景: GAN-SR模型虽然…

Ubuntu用户安装cpolar内网穿透

前言 Cpolar作为一款体积小巧却功能强大的内网穿透软件,不仅能够在多种环境和应用场景中发挥巨大作用,还能适应多种操作系统,应用最为广泛的Windows、Mac OS系统自不必多说,稍显小众的Linux、树莓派、群辉等也在起支持之列&#…

小程序事件系统 —— 33 事件传参 - data-*自定义数据

事件传参:在触发事件时,将一些数据作为参数传递给事件处理函数的过程,就是事件传参; 在微信小程序中,我们经常会在组件上添加一些自定义数据,然后在事件处理函数中获取这些自定义数据,从而完成…

【Java学习】包装类

面向对象系列九 包装类变量 一、装箱 1.实例化包装对象 2.静态缓存池 3.写法 二、拆箱 包装类变量 每个基本数据类型都有对应的基本类型的包装类变量,将基本数据类型通过对应的包装类对象载入着进入到类与对象面向对象体系 一、装箱 Integer.valueOf(int) —…

中国自动化领域零部件研究报告

一、引言 1.1 研究背景与目的 随着科技的飞速发展,自动化技术已成为推动各行业转型升级的关键力量。中国自动化领域零部件行业在近年来取得了显著进展,市场规模持续扩大,技术水平不断提升。在政策支持与市场需求的双重驱动下,中…

MySQL数据集成:高效数据同步与监控

MySQL数据集成案例分享:user-钉钉部门树-名称刷新 在企业信息系统中,数据的高效流动和准确同步是确保业务连续性和决策支持的重要环节。本文将聚焦于一个具体的系统对接集成案例——将MySQL中的数据集成到另一个MySQL数据库中,方案名称为“u…

时序数据库TimescaleDB基本操作示例

好的&#xff01;以下是使用 TimescaleDB 的 Java 示例&#xff08;基于 JDBC&#xff0c;因为 TimescaleDB 是 PostgreSQL 的扩展&#xff0c;官方未提供独立的 Java SDK&#xff09;&#xff1a; 1. 添加依赖&#xff08;Maven&#xff09; <dependency><groupId&g…

【VBA】WPS/PPT设置标题字体

通过VBA&#xff0c;配合左上角的快速访问工具栏&#xff0c;实现自动化调整 选中文本框的 字体位置、大小、颜色。 配合quicker更加便捷 Sub DisableAutoWrapAndFormat()Dim shp As Shape 检查是否选中了一个形状&#xff08;文本框&#xff09;If ActiveWindow.Selection.Typ…

Qt:事件

目录 处理事件 鼠标事件 键盘事件 定时器事件 窗口事件 虽然 Qt 是跨平台的 C 开发框架&#xff0c;Qt 的很多能力其实是操作系统提供的 只不过 Qt 封装了系统的 API 事件 前面学习过信号槽&#xff1a; 用户进行的各种操作&#xff0c;就可能会产生出信号&#xff0c;可以…

3个 Vue Scoped 的核心原理

大家好&#xff0c;我是大澈&#xff01;一个喜欢结交朋友、喜欢编程技术和科技前沿的老程序员&#x1f468;&#x1f3fb;‍&#x1f4bb;&#xff0c;关注我&#xff0c;科技未来或许我能帮到你&#xff01; 先用一句话概括 Vue Scoped 的核心原理&#xff1a;Vue 的 scoped…

物联网IoT系列之MQTT协议基础知识

文章目录 物联网IoT系列之MQTT协议基础知识物联网IoT是什么&#xff1f;什么是MQTT&#xff1f;为什么说MQTT是适用于物联网的协议&#xff1f;MQTT工作原理核心组件核心机制 MQTT工作流程1. 建立连接2. 发布和订阅3. 消息确认4. 断开连接 MQTT工作流程图MQTT在物联网中的应用 …

ubuntu 20.04 C++ 源码编译 cuda版本 opencv4.5.0

前提条件是安装好了cuda和cudnn 点击下载&#xff1a; opencv_contrib4.5.0 opencv 4.5.0 解压重命名后 进入opencv目录&#xff0c;创建build目录 “CUDA_ARCH_BIN ?” 这里要根据显卡查询一下,我的cuda是11&#xff0c;显卡1650&#xff0c;所以是7.5 查询方法1&#xff1…

2025-03-07 学习记录--C/C++-PTA 习题8-5 使用函数实现字符串部分复制

合抱之木&#xff0c;生于毫末&#xff1b;九层之台&#xff0c;起于累土&#xff1b;千里之行&#xff0c;始于足下。&#x1f4aa;&#x1f3fb; 一、题目描述 ⭐️ 二、代码&#xff08;C语言&#xff09;⭐️ #include <stdio.h> #define MAXN 20void strmcpy( char…

江科大51单片机笔记【10】蜂鸣器(上)

一、蜂鸣器 1.原理 蜂鸣器是一种将电信号转换为声音信号的器件&#xff0c;常同来产生设备的按键音、报警音等提示信号蜂鸣器按驱动方式可分为有源蜂鸣器和无源蜂鸣器&#xff08;外观基本一样&#xff09;有源蜂鸣器&#xff1a;内部自带振荡源&#xff0c;将正负极接上直流…

最新版本WebContext构造函数-避坑

import org.thymeleaf.context.IWebContext; import org.thymeleaf.context.WebContext; 当你想把页面信息全部获取出来存到redis缓存中使用时&#xff0c;SpringWebContext在Spring5中报错 SpringWebContext ctx new SpringWebContext(request, response,request.getServlet…

忘记dedecms后台超级管理员账号和密码的解决方案

解决方案&#xff1a; 方案一、数据库修改&#xff1a; 1、前提是您能登录到数据库后台&#xff0c;登录MySQL数据库管理工具&#xff08;如phpMyAdmin&#xff09; 2、打开数据库中的 dede_admin 表&#xff0c;找到管理员记录&#xff0c;将 pwd 字段的值改成 f297a57a5a7…

Kubernetes中的 iptables 规则介绍

#作者&#xff1a;邓伟 文章目录 一、Kubernetes 网络模型概述二、iptables 基础知识三、Kubernetes 中的 iptables 应用四、查看和调试 iptables 规则五、总结 在 Kubernetes 集群中&#xff0c;iptables 是一个核心组件&#xff0c; 用于实现服务发现和网络策略。iptables 通…

Windows 11下Git Bash执行cURL脚本400问题、CMD/PowerShell不能执行多行文本等问题记录及解决方案

问题 在Postman里可成功执行的POST请求&#xff1a; 找到Postman的Code 因为cURL基本上算是行业标准&#xff0c;所以Postman默认选中cURL&#xff0c;支持切换不同的开发语言&#xff1a; 点击上图右上角的复制按钮&#xff0c;得到cURL脚本。 Windows 11家庭版&#xff…