SpringData、SparkStreaming和Flink集成Elasticsearch

news2024/11/24 20:58:46

本文代码链接:https://download.csdn.net/download/shangjg03/88522188

1 Spring Data框架集成

1.1 Spring Data框架介绍

Spring Data是一个用于简化数据库、非关系型数据库、索引库访问,并支持云服务的开源框架。其主要目标是使得对数据的访问变得方便快捷,并支持map-reduce框架和云计算数据服务。 Spring Data可以极大的简化JPA(Elasticsearch…)的写法,可以在几乎不用写实现的情况下,实现对数据的访问和操作。除了CRUD外,还包括如分页、排序等一些常用的功能。

Spring Data的官网:Spring Data

Spring Data常用的功能模块如下:

1.2 Spring Data Elasticsearch介绍

Spring Data Elasticsearch 基于 spring data API 简化 Elasticsearch操作,将原始操作Elasticsearch的客户端API 进行封装 。Spring Data为Elasticsearch项目提供集成搜索引擎。Spring Data Elasticsearch POJO的关键功能区域为中心的模型与Elastichsearch交互文档和轻松地编写一个存储索引库数据访问层。

官方网站: https://spring.io/projects/spring-data-elasticsearch

1.3 Spring Data Elasticsearch版本对比

目前最新springboot对应Elasticsearch7.6.2,Spring boot2.3.x一般可以兼容Elasticsearch7.x

1.4 框架集成

  1. 创建Maven项目

  1. 修改pom文件,增加依赖关系

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.3.6.RELEASE</version>
        <relativePath/>
    </parent>


    <groupId>com.shangjack.es</groupId>
    <artifactId>springdata-elasticsearch</artifactId>
    <version>1.0</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-devtools</artifactId>
            <scope>runtime</scope>
            <optional>true</optional>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-test</artifactId>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework</groupId>
            <artifactId>spring-test</artifactId>
        </dependency>
    </dependencies>
</project>

  1. 增加配置文件

在resources目录中增加application.properties文件

es服务地址
elasticsearch.host=127.0.0.1
es服务端口
elasticsearch.port=9200
# 配置日志级别,开启debug日志
logging.level.com.shangjack.es=debug

  1. SpringBoot主程序

package com.shangjack.es;


import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class SpringDataElasticSearchMainApplication {
    public static void main(String[] args) {
        SpringApplication.run(SpringDataElasticSearchMainApplication.class,args);
    }
}
数据实体类
package com.shangjack.es;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import lombok.ToString;

@Data
@NoArgsConstructor
@AllArgsConstructor
@ToString
public class Product {
    private Long id;//商品唯一标识
    private String title;//商品名称
    private String category;//分类名称
    private Double price;//商品价格
    private String images;//图片地址

}

  1. 配置类
  • ElasticsearchRestTemplate是spring-data-elasticsearch项目中的一个类,和其他spring项目中的template类似。
  • 在新版的spring-data-elasticsearch中,ElasticsearchRestTemplate代替了原来的ElasticsearchTemplate。
  • 原因是ElasticsearchTemplate基于TransportClient,TransportClient即将在8.x以后的版本中移除。所以,我们推荐使用ElasticsearchRestTemplate。
  • ElasticsearchRestTemplate基于RestHighLevelClient客户端的。需要自定义配置类,继承AbstractElasticsearchConfiguration,并实现elasticsearchClient()抽象方法,创建RestHighLevelClient对象。

package com.shangjack.es;

import lombok.Data;
import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.client.RestHighLevelClient;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.elasticsearch.config.AbstractElasticsearchConfiguration;

@ConfigurationProperties(prefix = "elasticsearch")
@Configuration
@Data
public class ElasticsearchConfig extends AbstractElasticsearchConfiguration {
    private String host ;
    private Integer port ;

    //重写父类方法
    @Override
    public RestHighLevelClient elasticsearchClient() {
        RestClientBuilder builder = RestClient.builder(new HttpHost(host, port));
        RestHighLevelClient restHighLevelClient = new RestHighLevelClient(builder);
        return restHighLevelClient;
    }
}

  1. DAO数据访问对象

package com.shangjack.es;

import org.springframework.data.elasticsearch.repository.ElasticsearchRepository;
import org.springframework.stereotype.Repository;

@Repository
public interface ProductDao extends ElasticsearchRepository<Product,Long> {

}

  1. 实体类映射操作

package com.shangjack.es;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import lombok.ToString;
import org.springframework.data.annotation.Id;
import org.springframework.data.elasticsearch.annotations.Document;
import org.springframework.data.elasticsearch.annotations.Field;
import org.springframework.data.elasticsearch.annotations.FieldType;

@Data
@NoArgsConstructor
@AllArgsConstructor
@ToString
@Document(indexName = "shopping", shards = 3, replicas = 1)
public class Product {
    //必须有id,这里的id是全局唯一的标识,等同于es中的"_id"
    @Id
    private Long id;//商品唯一标识
    /**
     * type : 字段数据类型
     * analyzer : 分词器类型
     * index : 是否索引(默认:true)
     * Keyword : 短语,不进行分词
     */

    @Field(type = FieldType.Text, analyzer = "ik_max_word")
    private String title;//商品名称
    @Field(type = FieldType.Keyword)
    private String category;//分类名称
    @Field(type = FieldType.Double)
    private Double price;//商品价格
    @Field(type = FieldType.Keyword, index = false)
    private String images;//图片地址
}

  1. 索引操作

package com.shangjack.es;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.elasticsearch.core.ElasticsearchRestTemplate;
import org.springframework.test.context.junit4.SpringRunner;

@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringDataESIndexTest {
    //注入ElasticsearchRestTemplate
    @Autowired
    private ElasticsearchRestTemplate elasticsearchRestTemplate;

    //创建索引并增加映射配置
    @Test
    public void createIndex(){
        //创建索引,系统初始化会自动创建索引
        System.out.println("创建索引");
    }

    @Test
    public void deleteIndex(){
        //创建索引,系统初始化会自动创建索引
        boolean flg = elasticsearchRestTemplate.deleteIndex(Product.class);
        System.out.println("删除索引 = " + flg);
    }
}

  1. 文档操作

package com.shangjack.es;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.PageRequest;
import org.springframework.data.domain.Sort;
import org.springframework.test.context.junit4.SpringRunner;

import java.util.ArrayList;
import java.util.List;

@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringDataESProductDaoTest {
    @Autowired
    private ProductDao productDao;

    /**
     * 新增
     */
    @Test
    public void save(){
        Product product = new Product();
        product.setId(2L);
        product.setTitle("华为手机");
        product.setCategory("手机");
        product.setPrice(2999.0);
        product.setImages("http://www.shangjack/hw.jpg");
        productDao.save(product);
    }

    //修改
    @Test
    public void update(){
        Product product = new Product();
        product.setId(1L);
        product.setTitle("小米2手机");
        product.setCategory("手机");
        product.setPrice(9999.0);
        product.setImages("http://www.shangjack/xm.jpg");
        productDao.save(product);
    }

    //根据id查询
    @Test
    public void findById(){
        Product product = productDao.findById(1L).get();
        System.out.println(product);
    }

    //查询所有
    @Test
    public void findAll(){
        Iterable<Product> products = productDao.findAll();
        for (Product product : products) {
            System.out.println(product);
        }
    }

    //删除
    @Test
    public void delete(){
        Product product = new Product();
        product.setId(1L);
        productDao.delete(product);
    }

    //批量新增
    @Test
    public void saveAll(){
        List<Product> productList = new ArrayList<>();
        for (int i = 0; i < 10; i++) {
            Product product = new Product();
            product.setId(Long.valueOf(i));
            product.setTitle("["+i+"]小米手机");
            product.setCategory("手机");
            product.setPrice(1999.0+i);
            product.setImages("http://www.shangjack/xm.jpg");
            productList.add(product);
        }
        productDao.saveAll(productList);
    }

    //分页查询
    @Test
    public void findByPageable(){
        //设置排序(排序方式,正序还是倒序,排序的id)
        Sort sort = Sort.by(Sort.Direction.DESC,"id");
        int currentPage=0;//当前页,第一页从0开始,1表示第二页
        int pageSize = 5;//每页显示多少条
        //设置查询分页
        PageRequest pageRequest = PageRequest.of(currentPage, pageSize,sort);
        //分页查询
        Page<Product> productPage = productDao.findAll(pageRequest);
        for (Product Product : productPage.getContent()) {
            System.out.println(Product);
        }
    }
}

  1. 文档搜索

package com.shangjack.es;

import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.index.query.TermQueryBuilder;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.domain.PageRequest;
import org.springframework.test.context.junit4.SpringRunner;

@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringDataESSearchTest {
    @Autowired
    private ProductDao productDao;

    /**
     * term查询
     * search(termQueryBuilder) 调用搜索方法,参数查询构建器对象
     */
    @Test
    public void termQuery(){
        TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("title", "小米");
        Iterable<Product> products = productDao.search(termQueryBuilder);
        for (Product product : products) {
            System.out.println(product);
        }
    }

    /**
     * term查询加分页
     */
    @Test
    public void termQueryByPage(){
        int currentPage= 0 ;
        int pageSize = 5;
        //设置查询分页
        PageRequest pageRequest = PageRequest.of(currentPage, pageSize);
        TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("title", "小米");
        Iterable<Product> products = productDao.search(termQueryBuilder,pageRequest);
        for (Product product : products) {
            System.out.println(product);
        }
    }

}

2 Spark Streaming框架集成

2.1 Spark Streaming框架介绍

Spark Streaming是Spark core API的扩展,支持实时数据流的处理,并且具有可扩展,高吞吐量,容错的特点。 数据可以从许多来源获取,如Kafka,Flume,Kinesis或TCP sockets,并且可以使用复杂的算法进行处理,这些算法使用诸如map,reduce,join和window等高级函数表示。 最后,处理后的数据可以推送到文件系统,数据库等。 实际上,您可以将Spark的机器学习和图形处理算法应用于数据流。

2.2 框架集成

  1. 创建Maven项目

  1. 修改pom文件,增加依赖关系

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.shangjack.es</groupId>
    <artifactId>sparkstreaming-elasticsearch</artifactId>
    <version>1.0</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>
        <dependency>
            <groupId>org.elasticsearch</groupId>
            <artifactId>elasticsearch</artifactId>
            <version>7.8.0</version>
        </dependency>
        <!-- elasticsearch的客户端 -->
        <dependency>
            <groupId>org.elasticsearch.client</groupId>
            <artifactId>elasticsearch-rest-high-level-client</artifactId>
            <version>7.8.0</version>
        </dependency>
        <!-- elasticsearch依赖2.xlog4j -->
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-api</artifactId>
            <version>2.8.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-core</artifactId>
            <version>2.8.2</version>
        </dependency>
<!--        <dependency>-->
<!--            <groupId>com.fasterxml.jackson.core</groupId>-->
<!--            <artifactId>jackson-databind</artifactId>-->
<!--            <version>2.11.1</version>-->
<!--        </dependency>-->
<!--        &lt;!&ndash; junit单元测试 &ndash;&gt;-->
<!--        <dependency>-->
<!--            <groupId>junit</groupId>-->
<!--            <artifactId>junit</artifactId>-->
<!--            <version>4.12</version>-->
<!--        </dependency>-->
    </dependencies>
</project>

  1. 功能实现

package com.shangjack.es

import org.apache.http.HttpHost
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.ReceiverInputDStream
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.elasticsearch.action.index.IndexRequest
import org.elasticsearch.client.indices.CreateIndexRequest
import org.elasticsearch.client.{RequestOptions, RestClient, RestHighLevelClient}
import org.elasticsearch.common.xcontent.XContentType

import java.util.Date

object SparkStreamingESTest {

    def main(args: Array[String]): Unit = {
        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("ESTest")
        val ssc = new StreamingContext(sparkConf, Seconds(3))

        val ds: ReceiverInputDStream[String] = ssc.socketTextStream("localhost", 9999)

        ds.foreachRDD(
            rdd => {
                println("*************** " + new Date())
                rdd.foreach(
                    data => {
                        val client = new RestHighLevelClient(
                            RestClient.builder(new HttpHost("localhost", 9200, "http"))
                        );
                        // 新增文档 - 请求对象
                        val request = new IndexRequest();
                        // 设置索引及唯一性标识
                        val ss = data.split(" ")
                        println("ss = " + ss.mkString(","))
                        request.index("sparkstreaming").id(ss(0));
                        val productJson =
                            s"""
                              | { "data":"${ss(1)}" }
                              |""".stripMargin;
                        // 添加文档数据,数据格式为JSON格式
                        request.source(productJson,XContentType.JSON);
                        // 客户端发送请求,获取响应对象
                        val response = client.index(request, RequestOptions.DEFAULT);
                        System.out.println("_index:" + response.getIndex());
                        System.out.println("_id:" + response.getId());
                        System.out.println("_result:" + response.getResult());

                        client.close()
                    }
                )
            }
        )

        ssc.start()
        ssc.awaitTermination()
    }
}

3 Flink框架集成

3.1 Flink框架介绍

Apache Spark是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。

Apache Spark掀开了内存计算的先河,以内存作为赌注,赢得了内存计算的飞速发展。但是在其火热的同时,开发人员发现,在Spark中,计算框架普遍存在的缺点和不足依然没有完全解决,而这些问题随着5G时代的来临以及决策者对实时数据分析结果的迫切需要而凸显的更加明显:

  • 数据精准一次性处理(Exactly-Once)
  • 乱序数据,迟到数据
  • 低延迟,高吞吐,准确性
  • 容错性

Apache Flink是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。在Spark火热的同时,也默默地发展自己,并尝试着解决其他计算框架的问题。

慢慢地,随着这些问题的解决,Flink慢慢被绝大数程序员所熟知并进行大力推广,阿里公司在2015年改进Flink,并创建了内部分支Blink,目前服务于阿里集团内部搜索、推荐、广告和蚂蚁等大量核心实时业务。

3.2 框架集成

  1. 创建Maven项目

  1. 修改pom文件,增加相关依赖类库

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.shangjack.es</groupId>
    <artifactId>flink-elasticsearch</artifactId>
    <version>1.0</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-scala_2.12</artifactId>
            <version>1.12.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_2.12</artifactId>
            <version>1.12.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.12</artifactId>
            <version>1.12.0</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-elasticsearch7_2.11</artifactId>
            <version>1.12.0</version>
        </dependency>

        <!-- jackson -->
        <dependency>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-core</artifactId>
            <version>2.11.1</version>
        </dependency>
    </dependencies>
</project>

  1. 功能实现

package com.shangjack.es;

import org.apache.flink.api.common.functions.RuntimeContext;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.elasticsearch.ElasticsearchSinkFunction;
import org.apache.flink.streaming.connectors.elasticsearch.RequestIndexer;
import org.apache.flink.streaming.connectors.elasticsearch7.ElasticsearchSink;
import org.apache.http.HttpHost;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.client.Requests;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class FlinkElasticsearchSinkTest {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStreamSource<String> source = env.socketTextStream("localhost", 9999);

        List<HttpHost> httpHosts = new ArrayList<>();
        httpHosts.add(new HttpHost("127.0.0.1", 9200, "http"));
        //httpHosts.add(new HttpHost("10.2.3.1", 9200, "http"));

// use a ElasticsearchSink.Builder to create an ElasticsearchSink
        ElasticsearchSink.Builder<String> esSinkBuilder = new ElasticsearchSink.Builder<>(
                httpHosts,
                new ElasticsearchSinkFunction<String>() {
                    public IndexRequest createIndexRequest(String element) {
                        Map<String, String> json = new HashMap<>();
                        json.put("data", element);

                        return Requests.indexRequest()
                                .index("my-index")
                                //.type("my-type")
                                .source(json);
                    }

                    @Override
                    public void process(String element, RuntimeContext ctx, RequestIndexer indexer) {
                        indexer.add(createIndexRequest(element));
                    }
                }
        );

// configuration for the bulk requests; this instructs the sink to emit after every element, otherwise they would be buffered
        esSinkBuilder.setBulkFlushMaxActions(1);

// provide a RestClientFactory for custom configuration on the internally created REST client
//        esSinkBuilder.setRestClientFactory(
//                restClientBuilder -> {
//                    restClientBuilder.setDefaultHeaders(...)
//                    restClientBuilder.setMaxRetryTimeoutMillis(...)
//                    restClientBuilder.setPathPrefix(...)
//                    restClientBuilder.setHttpClientConfigCallback(...)
//                }
//        );

        source.addSink(esSinkBuilder.build());

        env.execute("flink-es");
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1194680.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue项目pdf文件的预览

1.下载 您可以在以下网址下载pdfjsLib&#xff1a;https://github.com/mozilla/pdf.js pdfjsLib是一个开源项目&#xff0c;您可以在GitHub上找到其源代码和相关资源。 2.放置文件位置 3.进入 在index.html引入 <script src"<% BASE_URL %>static/pdfjs-dist/b…

赛宁网安入选国家工业信息安全漏洞库(CICSVD)2023年度技术组成员单

近日&#xff0c;由国家工业信息安全发展研究中心、工业信息安全产业发展联盟主办的“2023工业信息安全大会”在北京成功举行。 会上&#xff0c;国家工业信息安全发展研究中心对为国家工业信息安全漏洞库&#xff08;CICSVD&#xff09;提供技术支持的单位授牌表彰。北京赛宁…

WPF ToggleButton 主题切换动画按钮

WPF ToggleButton 主题切换动画按钮 仿造最近看到的html中的一个效果&#xff0c;大致思路是文章这样&#xff0c;感觉还可以再雕琢一下。 代码如下 XAML: <UserControl x:Class"WPFSwitch.AnimationSwitch"xmlns"http://schemas.microsoft.com/winfx/200…

8255 boot介绍及bring up经验分享

这篇文章会简单的介绍8255的启动流程&#xff0c;然后着重介绍8255在实际项目中新硬件上的bring up工作&#xff0c;可以给大家做些参考。 8255 boot介绍 下面这些信息来自文档&#xff1a;《QAM8255P IVI Boot and CoreBSP Architecture Technical Overview》 80-42847-11 R…

Django debug page XSS漏洞复现_(CVE-2017-12794)

Django debug page XSS漏洞复现_(CVE-2017-12794) 复现过程 首先进入靶场环境 按照他写的&#xff0c;需要给这个变量赋值 创建一个用户&#xff0c;用弹窗做用户名 http://10.4.7.137:8000/create_user/?username<script>alert(1)</script>返回&#xff0c;然…

Unity中Shader的间接光的产生Meta Pass

文章目录 前言Unity中Shader的间接光的产生Meta Pass&#xff0c;这也是属于全局光照 GI 的内容。主要实现像现实生活中&#xff0c;光线照到有颜色的物体后&#xff0c;该物体有反射出该颜色的光的效果。 一、我们先使用Unity自带的Shader看看间接光效果1、先按照如下设置搭建…

C++ | 继承和多态

目录 继承 继承的概念及用法 继承的作用域 向上转型和向下转型 继承过程中的默认生成函数 菱形继承及其解决方案 - 虚继承 虚继承的原理 - 虚基类表 继承和组合 多态 虚函数 多态的定义及使用 纯虚函数与抽象类 多态的原理 小点补充 虚表的位置 父类指针new一个…

聊聊测试左移到需求阶段

这是鼎叔的第七十九篇原创文章。行业大牛和刚毕业的小白&#xff0c;都可以进来聊聊。 欢迎关注本公众号《敏捷测试转型》&#xff0c;星标收藏&#xff0c;大量原创思考文章陆续推出。本人新书《无测试组织-测试团队的敏捷转型》​​​​​​​已出版&#xff08;机械工业出版…

单链表的基本操作代码

#include<stdio.h> #include<stdlib.h> typedef int Status;//函数类型&#xff08;当return值为函数结果状态时用&#xff09;需要自定义&#xff01; typedef int ElemType;//相当于给 int起个别名 typedef struct LinkList{ ElemType data; struct L…

JMeter实现持续压测websocket

1、安装插件&#xff1a;JMeter WebSocket Samplers pjtr / JMeter WebSocket Samplers / Downloads — Bitbuckethttps://bitbucket.org/pjtr/jmeter-websocket-samplers/downloads/ 将下载的Jar包放在安装jmeter的/lib/ext路径下&#xff0c;重启生效 查看测试计划--》配置…

python爬虫怎么翻页

爬虫程序的代码实现如下&#xff1a; #include <iostream> #include <string> #include <curl/curl.h>int main() {CURL *curl;CURLcode res;std::string readBuffer;curl_global_init(CURL_GLOBAL_DEFAULT);curl curl_easy_init();if(curl) {curl_easy_se…

ChatGPT、GPT-4 Turbo接口调用(stream模式)

接口地址 https://chat.xutongbao.top/api/light/chat/createChatCompletion 请求方式 post 请求参数 model可选值&#xff1a; “gpt-3.5-turbo-1106”、 “gpt-3.5-turbo-16k” 、 “gpt-4”、“gpt-4-1106-preview”。 默认值为&#xff1a; “gpt-3.5-turbo-1106” to…

LeetCode 17. 电话号码的字母组合 中等

题目 - 点击直达 1. 17. 电话号码的字母组合 中等1. 题目详情1. 原题链接2. 题目要求3. 基础框架 2. 解题思路1. 思路分析2. 时间复杂度3. 代码实现 3. 知识与收获 1. 17. 电话号码的字母组合 中等 1. 题目详情 1. 原题链接 LeetCode 17. 电话号码的字母组合 中等 2. 题目要…

后端架构选择:构建安全强大的知识付费小程序平台

构建知识付费小程序平台需要考虑后端架构&#xff0c;确保系统安全性、性能和可扩展性。以下是一些常见的后端技术和最佳实践&#xff0c;能帮助您构建强大且安全的知识付费小程序平台。 1. 服务器端语言和框架选择 选择流行、成熟的后端语言和框架&#xff0c;如Node.js、P…

基于php js+mysql+laravel技术架构的手术麻醉管理系统源码 手麻系统源码

PHP手术麻醉管理系统源码 手麻系统源码 手术麻醉管理系统定义&#xff1a; 手术麻醉系统主要是由麻醉信息管理和监护设备数据采集系统两个部分组成&#xff0c;主要是将麻醉信息和从监护仪器上采集到的数据以及手术信息进行统计。 手术麻醉系统是指专用于住院患者手术与麻醉…

AR工业眼镜:智能化生产新时代的引领者!!

科技飞速发展&#xff0c;人工智能与增强现实&#xff08;AR&#xff09;技术结合正在改变生活工作方式。AR工业眼镜在生产领域应用广泛&#xff0c;具有实时信息展示、智能导航定位、远程协作培训、智能安全监测等功能&#xff0c;提高生产效率、降低操作风险&#xff0c;为企…

网络通信TCP、UDP详解

目录 IP 和端口 网络传输中的 2 个对象&#xff1a;server 和 client 两种传输方式&#xff1a;TCP/UDP TCP 和 UDP 原理上的区别 为何存在 UDP 协议 TCP/UDP 网络通信大概交互图 IP 和端口 所有的数据传输&#xff0c;都有三个要素 &#xff1a;源、目的、长度。 怎么表…

开机自启动笔记本的小键盘

虽然电脑开机次数不多&#xff0c;但每次开机都要摁下小键盘的开关&#xff0c;好烦 终于忍不住了&#xff1a; 将下面文件命名为 XXX.bat echo off rem 禁用批处理文件中的命令回显&#xff0c;以使输出更整洁rem 查询注册表中 "InitialKeyboardIndicators" 的值 r…

devops完整搭建教程(gitlab、jenkins、harbor、docker)

devops完整搭建教程&#xff08;gitlab、jenkins、harbor、docker&#xff09; 文章目录 devops完整搭建教程&#xff08;gitlab、jenkins、harbor、docker&#xff09;1.简介&#xff1a;2.工作流程&#xff1a;3.优缺点4.环境说明5.部署前准备工作5.1.所有主机永久关闭防火墙…

ChatGPT-4:OpenAI的革命性升级

在人工智能领域&#xff0c;OpenAI这家公司凭借其创新性的技术&#xff0c;成为了备受瞩目的领导者。他们最近发布的ChatGPT-4&#xff0c;以其卓越的语言处理能力和先进的模型架构&#xff0c;引领了语言模型领域的革命性升级。 ChatGPT-4的模型容量相较于前一版本有了显著的提…