PanNet: A deep network architecture for pan-sharpening(ICCV 2017)

news2024/10/6 6:01:41


文章目录

  • Abstract
  • Introduction
    • 过去方法存在的问题
    • 我们提出新的解决方法
    • Related work
  • PanNet: A deep network for pan-sharpening(PanNet:用于泛锐化的深度网络)
    • Background and motivation
    • PanNet architecture
      • Spectral preservation
      • Structural preservation
      • Network architecture
  • Experiments
  • Conclusion

論文鏈接
源代码

Abstract

我们针对泛锐化问题提出了一种深度网络架构,称为PanNet。我们结合特定领域的知识来设计我们的PanNet架构,重点关注泛锐化问题的两个目标:光谱和空间保存
为了保持光谱,我们将上采样的多光谱图像加入到网络输出中,直接将光谱信息传播到重建图像中
为了保持空间结构,我们在高通滤波域而不是图像域训练网络参数
我们表明,训练后的网络可以很好地泛化来自不同卫星的图像,而无需再训练。实验表明,在视觉上和标准质量度量方面,比最先进的方法有了显著的改进

Introduction

多光谱图像在农业、矿业和环境监测等领域有着广泛的应用。由于物理限制,卫星通常只能测量一张高分辨率全色(PAN)图像(即灰度)和几张低分辨率多光谱(LRMS)图像.泛锐化的目标是将这些光谱信息和空间信息融合在一起,得到与PAN相同尺寸的高分辨率多光谱(HRMS)图像

过去方法存在的问题

随着近年来深度神经网络在图像处理应用中的进展,研究人员已经开始探索这种泛锐化的途径,例如,一个深度泛锐化模型假设关系HR/LR多光谱图像斑块之间的差值与对应的HR/LR全色图像斑块之间的差值相同,并利用这一假设通过神经网络学习映射,最先进的泛锐化模型,基于卷积神经网络,称为PNN[21],采用了先前提出的图像超分辨率架构
这两种方法都把泛锐化问题看作一个简单的图像回归问题。也就是说,尽管他们能够获得良好的结果,但他们没有利用泛锐化的特定目标——光谱和空间保存——而是将泛锐化视为一个黑盒深度学习问题。然而,对于泛锐化,很明显,保留空间和光谱信息是融合的主要目标,因此深度学习方法应该明确地关注这些方面

我们提出新的解决方法

这激发了我们提出的称为“PanNet”的深度网络,它具有以下特征:

  1. 我们将泛锐化的问题特定知识纳入深度学习框架。具体来说,我们使用上采样的多光谱图像在网络中传播光谱信息,我们将此过程称为“光谱映射”。为了重点研究PAN图像中的主体结构,我们在高通域而不是图像域训练网络
  2. 我们的方法是一个端到端系统,它完全从数据中自动学习映射。与之前的(非深度)方法不同,卷积允许我们捕获MS图像和PAN图像不同波段的内部相关性
    实验表明,PanNet与几种标准方法以及其他深度模型相比,实现了最先进的性能
  3. 由于成像值的范围不一致,大多数传统方法需要针对不同的卫星进行参数调整。然而,在高通域的训练消除了这个因素,允许在一个卫星上的训练很好地推广到新的卫星,这不是在图像域上训练的其他深度方法的特征

Related work

简要介绍下过去的work
近几十年来出现了各种各样的pan锐化方法。其中,最流行的是基于分量替换,包括强度色调饱和度技术(IHS)[5],主成分分析(PCA)[20]和Brovey变换[14]。这些方法简单而快速,但它们往往以引入光谱失真为代价,成功地接近了PAN中包含的HRMS图像的空间分辨率
为了解决这个问题,已经提出了更复杂的技术,例如自适应方法(例如,PRACS[8])和频段相关方法(例如,BDSD[13])。在多分辨率方法[19,22]中,PAN图像和LRMS图像被分解,例如使用小波或拉普拉斯金字塔,然后融合
其他基于模型的方法将PAN、HRMS和LRMS图像之间关系的信念编码为正则化目标函数,然后将融合问题视为图像恢复优化问题[3,4,7,9,12,18]。其中许多算法都取得了很好的效果。我们在这些方法中选择最好的方法进行实验比较

PanNet: A deep network for pan-sharpening(PanNet:用于泛锐化的深度网络)


图2显示了我们提出的泛锐化深度学习方法(称为PanNet)的高级概要。我们首先回顾了泛锐化问题的常见方法,然后在泛锐化的两个目标背景下讨论了我们的方法,即重建包含pan空间内容的高分辨率多光谱图像和低分辨率图像的光谱内容

Background and motivation

我们将期望的HRMS图像集表示为X,并设Xb为第b个波段的图像。对于观测数据,P为PAN图像,M为LRMS图像,Mb为第b波段。大多数最先进的方法将融合视为最小化形式的目标

其中f1 (X,P)项强制结构一致性,f2 (X,M)强制光谱一致性,f3 (X)对X施加期望的图像约束。例如,第一个变分方法P+XS让

ω是一个b维概率权向量

其他方法使用空间差分算子G来关注高频内容
为了光谱的一致性,许多方法定义

↑M b表示上采样M b与X b大小相同,通过与平滑核k卷积进行平滑。f3 (X)通常是总变异惩罚

对于泛锐化问题,一个直接的深度学习方法可以利用一个简单的网络架构来学习输入(P,M)和输出X之间的非线性映射关系

其中,fw代表一个神经网络,W代表其参数

PNN[21]使用了这一思想,它直接将(P,M)输入到一个深度卷积神经网络中来近似x。尽管这种直接的架构给出了很好的结果,但它没有利用已知的图像特征来定义输入或网络结构

PanNet architecture

与PNN一样,我们也使用卷积神经网络(CNN),但我们的具体结构与PNN不同,使用最近提出的ResNet结构作为我们的神经网络
卷积滤波器对于这个问题特别有用,因为它们可以利用多光谱图像不同波段之间的高相关性,这在SIRF算法[7]中被证明是有用的。与其他泛锐化方法一样,我们的深度网络旨在同时保留光谱和空间信息
High-level idea用图3所示的潜在网络结构序列表示

我们考虑的三种泛锐化模型结构的例子:(从左到右)ResNet [15],ResNet+光谱映射,以及最终提出的网络,称为PanNet。ResNet已被证明可以提高CNN在图像处理任务上的性能,但在泛锐化框架中存在缺点。第二种网络实现了光谱保存的目标,而最后一种网络同时捕获了空间和光谱信息。我们对这三种方法都进行了试验,但没有一种应用于泛锐化

Spectral preservation

为了融合频谱信息,我们对M进行了上采样,并在该形式的深层网络中添加了一个跳跃连接
↑M表示上采样LRMS图像,f W表示ResNet,这一项的动机与式(3)中表示的目标相同
正如我们将看到的,它强制X共享m的频谱内容。与变分方法不同,我们不将X与平滑核进行卷积,而是允许深度网络纠正高分辨率的差异。在我们的实验中,我们将此模型称为“光谱映射”,并使用ResNet模型进行fw;对应图3中的中间网络

Structural preservation

我们将PAN图像和上采样LRMS图像的高通内容输入到深度网络W中,修改后的模型为
为了获得由函数G表示的高通信息,我们从原始图像中减去使用平均滤波器找到的低通内容
对于LRMS图像,我们在获得高通含量后将样本提升到PAN的大小
我们观察到,由于↑M是低分辨率的,它可以被看作包含了X的低通光谱含量,这是↑M - X项模型。这使得网络f W可以学习映射,将PAN中包含的高通spa信息融合到x中。我们将↑G(M)输入到网络中,以了解PAN中的空间信息如何映射到x中的不同光谱波段。这个目标对应于图3中的PanNet

在图4中,我们展示了图3中左右网络的初步比较。HRMS和LRMS图像有8个光谱带,我们用灰度表示为平均年龄。图4©显示了(a)的ResNet重建的平均绝对误差(MAE)图像,而(d)显示了提出的PanNet的平均绝对误差(MAE)图像。很明显,光谱映射可以更好地模拟光谱内容(在较暗的光滑区域中很明显),而在高通域上训练网络可以保留边缘和细节,这些结论得到了我们大量定量实验的支持
正如引言中提到的,在高通域训练深度网络的另一个优点是消除PAN和HRMS图像在不同卫星上产生的不一致性

Network architecture

在保留光谱信息的同时恢复空间信息的目标激发了式(6)中提出的目标。此外,之前的变分方法试图通过使用先验图像假设[3,7]来提高性能,对应于式(1)中的f3。在这里,我们利用深度学习直接学习一个函数,该函数捕获了PAN和LRMS输入之间的关系,以及HRMS输出
我们采用带有卷积神经网络的ResNet结构作为方程(6)中的网络模型fw,卷积运算有助于多光谱图像不同波段间的耦合建模。因此,我们的网络结构通过以下操作表示

其中,W表示权重,b表示网络偏差,l = 1,…, L−2/2, Y l表示第l层的输出

因此,网络建模的是不包含在↑ M中的高频边缘信息。近似的惩罚是如式(6)所示的Frobenius范数

虽然我们架构的参数层遵循ResNet,但两者在光谱映射过程(底部方程)和网络的高通输入(顶部方程)方面是不同的。在我们的实验中,我们将这种PanNet框架与直接应用于图像域的ResNet进行了比较,以显示合并这种额外领域知识的明显优势。(我们再次回顾,这两种方法都没有应用于泛锐化问题。)我们还比较了最先进的PNN,它使用了与ResNet不同的深度CNN学习方法

Experiments

我们利用Worldview3卫星的数据进行了几次实验。该卫星的PAN分辨率为0.41m ~ 1.5m。我们使用随机梯度下降(SGD)来最小化方程(6)中的目标函数。在我们的实验中,我们提取了18,000个大小为64 × 64的PAN/LRMS/HRMS补丁对。我们将其分成90/10%用于训练/验证。我们比较了六种广泛使用的泛锐化方法:PRACS[8]、In- dusion[19]、PHLP[18]、BDSD[13]、SIRF[6,7]和PNN[21]。每个参数都使用了几个参数设置,并选择了最佳性能





Conclusion

我们提出了PanNet,这是一个基于泛锐化的两个目标:光谱和空间保存的深度模型
对于光谱保存,我们引入了一种称为“光谱映射”的技术,将上采样的LRMS图像添加到目标函数中,允许网络只关注图像中的细节
为了空间保存,我们在PAN和上采样LRMS图像的高通分量上训练网络参数
我们使用ResNet作为一个非常适合这项任务的深度模型,与目前最先进的方法(包括PNN和vanilla ResNet)相比,Pan-Net实现了更好的图像重建,并更好地推广到新卫星

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1193466.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

网络原理---拿捏HTTP协议:请求和响应

文章目录 认识请求首行URLURL的格式URL的encode和decode 版本号方法GET方法POST方法GET VS POST 请求头:headerHostContent-Length 和 Content-TypeUser-Agent(UA)RefererCookie 空行正文:body如何构造HTTP请求?浏览器…

浙大恩特客户资源管理系统任意文件上传漏洞复现

0x01 产品简介 浙大恩特客户资源管理系统是一款针对企业客户资源管理的软件产品。该系统旨在帮助企业高效地管理和利用客户资源,提升销售和市场营销的效果。 0x02 漏洞概述 浙大恩特客户资源管理系统中fileupload.jsp接口处存在文件上传漏洞,未经身份认…

rv1126-rv1109-添加分区,定制固件,开机挂载功能

===================================================================== 修改分区: 这里是分区的txt文件选择; 这里是分区的划分,我这里回车了,方便看 FIRMWARE_VER: 8.1 MACHINE_MODEL: RV1126 MACHINE_ID: 007 MANUFACTURER: RV1126 MAGIC: 0x5041524B ATAG: 0x00200…

Ubuntu18.04.6共享文件夹的创建,以及在哪打开共享文件夹

目录 1、打开虚拟机的设置页面 2、设置共享文件夹 3、确认是否成功设置共享文件夹 4、完成后在进入到/mnt/hgfs ls查看,发现共享文件夹已经出现可以使用 1、打开虚拟机的设置页面 两种方式: (1)直接点击“编辑虚拟机设置” …

android自定义switch颜色

效果图&#xff1a; 原生样式和自己app的主题颜色不搭配&#xff0c;就可以这样自定义颜色样式。以下代码均可直接复制粘贴使用&#xff0c;且均有注释。 实现&#xff1a; 1、 新建drawable/switch_custom_thumb_on.xml&#xff08;滑块开启状态 &#xff09; <?xml ve…

DDD系列 - 第2讲 从贫血模型、事务脚本到面向对象(富血模型)、DDD领域模型的跨越

目录 一、灵魂拷问二、CRUD Boy现状三、贫血模型四、事务脚本五、从贫血模型演变到面向对象&#xff08;富血模型&#xff09;六、借助DDD领域模型摆脱事务脚本七、更多 一、灵魂拷问 Java作为面向对象的编程语言&#xff0c;使用Java编程的你面向对象了吗&#xff1f; 二、C…

“三位一体”超级混沌工程主要特点及功能

“三位一体”超级混沌工程X-Chaos主要包括基础故障编排、业务场景故障编排、演练场景编排、故障库管理、演练场景管理、演练计划管理、演练观测和演练报告等模块&#xff0c;支持对传统架构、云环境以及国产化基础环境的IT系统进行故障演练。本文将介绍混沌工程主要特点及主要功…

剪贴板劫持--PasteJacker的使用

启动 PasteJacker [1] Windows [2] Linux [3] Exit第一次是让我们选择要攻击针对的目标系统&#xff0c;这里以Windows系统为例&#xff0c;即我自己的物理机 因此键入 1 &#xff0c;回车 [1] Download and execute a msfvenom backdoor using certutil (Web delivery Past…

现在就是成为“新程序员”的黄金时刻!

整理 | 王启隆 出品 | CSDN&#xff08;ID&#xff1a;CSDNnews&#xff09; “自然语言代替了编程语言&#xff0c;大大地降低了程序员的门槛。现在&#xff0c;ChatGPT 将全球的知识库和代码都放在了你的手中&#xff0c;只要有想象力&#xff0c;人人都能成为「新程序员」…

一周成功拿下4个offer的软件测试面试题,面试必看系列

前言&#xff1a; 压到就是赚到&#xff0c;面试通过的机率就更大&#xff0c;干就完了铁子 【文章末尾给大家留下了大量的福利】 ​编辑 1、什么是兼容性测试&#xff1f;兼容性测试侧重哪些方面&#xff1f; 参考答案&#xff1a; 兼容测试主要是检查软件在不同的硬件平…

腾讯云2023年双11活动:云服务器1.8折起,还可领取9999元代金券!

2023年双11腾讯云推出了11.11云上盛惠大促活动&#xff0c;包括秒杀专区、服务器买赠、新人专区、代金券专区、境外优选、新老同享、续费专区以及热门上云场景等满足新用户、老用户、企业用户对云计算服务的各种需求。 一、腾讯云双11活动地址 活动入口&#xff1a;点此直达 …

【高等数学】导数的应用

导数的应用 1、洛必达法则1.1、引例1.2、内容1.3、证明1.4、洛必达的应用总结 1.5、注意 2、泰勒公式2.1、解决的问题2.2、引例2.3、内容2.3.1、带Peano余项的泰勒公式2.3.2、带Lagrange余项的泰勒公式2.3.3、麦克劳林公式2.3.4、几个初等函数的麦克劳林公式 2.4、证明2.5、泰勒…

智慧城市建设解决方案分享【完整】

文章目录 第1章 前言第2章 智慧城市建设的背景2.1 智慧城市的发展现状2.2 智慧城市的发展趋势 第3章 智慧城市“十二五”规划要点3.1 国民经济和社会发展“十二五”规划要点3.2 “十二五”信息化发展规划要点 第4章 大数据&#xff1a;智慧城市的智慧引擎4.1 大数据技术—智慧城…

css实战——清除列表中最后一个元素的下边距

需求描述 常见于列表的排版&#xff0c;如文章列表、用户列表、商品列表等。 代码实现 <div class"listBox"><div class"itemBox">文章1</div><div class"itemBox">文章2</div><div class"itemBox"…

java语法:继承与多态

导言: 在Java中&#xff0c;继承和多态是面向对象编程的两个重要概念&#xff0c;它们允许我们创建更加灵活和可扩展的代码。本文主要对继承和多态的语法和一些细节做一个介绍和解释。 目录 导言: 正文&#xff1a; 一.继承 1. 基本语法 2. 继承的特点 3.子类中访问父类…

新品上市|米尔RZ/G2UL核心板上市,助力工业4.0发展!

浩瀚的芯片海洋中能被人记住的寥寥无几&#xff0c;那些在人们脑海中留下印记的往往是踩中了时代的脉搏。32位ARMv7架构的A7/A8系列处理器自发布以来&#xff0c;以ARM9处理器的价格&#xff0c;升级了工业领域绝大部分应用需求&#xff0c;成为最近十年最受欢迎的通用工业级AR…

怎么写日语开发信?写外贸日语开发信技巧?

如何写好日语开发信&#xff1f;日语开发信格式是怎么样的&#xff1f; 无论您是初学者还是有经验的营销专家&#xff0c;都需要掌握一些关键技巧&#xff0c;以确保您的邮件在日本市场取得成功。蜂邮将向您介绍怎样写一封令人印象深刻的日语开发信&#xff0c;以吸引潜在客户…

2022年09月 Python(四级)真题解析#中国电子学会#全国青少年软件编程等级考试

Python等级考试(1~6级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 下列不是评判一个算法优劣的标准是?( ) A: 时间复杂度 B: 空间复杂度 C: 难易度 D: 健壮性 答案:C 评价算法的优劣是:时间复杂度,空间复杂度,健壮性,正确性,可读性。因此选…

Laplacian Redecomposition for Multimodal Medical Image Fusion

LRD方法 GDIE means ‘gradient-domain image enhancement’&#xff0c;DGR means ‘decision graph redecomposition’ MLD means ‘maximum local difference’ LEM means ‘local energy maximum’&#xff0c;OD means ‘overlapping domain’&#xff0c;LP means ‘L…

2023.11.8 hadoop学习-概述,hdfs dfs的shell命令

目录 1.分布式和集群 2.Hadoop框架 3.版本更新 4.hadoop架构详解 5.页面访问端口 6.Hadoop-HDFS HDFS架构 HDFS副本 7.SHELL命令 8.启动hive服务 1.分布式和集群 分布式: 多台服务器协同配合完成同一个大任务(每个服务器都只完成大任务拆分出来的单独1个子任务)集 群:…