基于鱼鹰算法的无人机航迹规划-附代码

news2024/12/23 9:53:27

基于鱼鹰算法的无人机航迹规划

文章目录

  • 基于鱼鹰算法的无人机航迹规划
    • 1.鱼鹰搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用鱼鹰算法来优化无人机航迹规划。

1.鱼鹰搜索算法

鱼鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/130542706

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得鱼鹰搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用鱼鹰算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,鱼鹰算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1185497.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

RabbitMQ集群配置以及负载均衡配置

RabbitMQ集群配置以及负载均衡配置 环境配置集群配置安装rabbitmq启动rabbitmq开启远程登录添加用户并且授权用户添加数据存放目录和日志存放目录查看端口拷⻉erlang.cookie将mq-2、mq-3作为内存节点加⼊mq-1节点集群中查看集群状态添加一个新的队列 RabbitMq负载均衡配置-HAPr…

Python算法例8 将整数A转换为B

1. 问题描述 给定整数A和B,求出将整数A转换为B,需要改变bit的位数。 2. 问题示例 把31转换为14,需要改变2个bit位,即:(31)10(11111)2,(14&…

一篇文章带你使用(MMKV--基于 mmap 的高性能通用 key-value 组件)

一、MMKV是什么? MMKV 是基于 mmap 内存映射的 key-value 组件,底层序列化/反序列化使用 protobuf 实现,性能高,稳定性强。也是腾讯微信团队使用的技术。 支持的数据类型 支持以下 Java 语言基础类型: boolean、int…

linux安装jdk和weblogic易错点

1.版本问题,如果版本不兼容,安装的时候会报错,所有安装之前要确认好版本 jdk1.6,weblogic10 2.jdk安装后配置文件 JAVA_HOME ,CLASSPATH,PATH,配置问你的追加,用冒号链接 修改后需要用source 刷新下 3安装…

SpringCloudAlibaba系列之Nacos配置管理

目录 说明 认识配置中心 Nacos架构图 Nacos配置管理实现原理 核心源码分析-客户端 核心源码分析-服务端 配置修改的实时通知 主流配置中心对比 小小收获 说明 本篇文章主要目的是从头到尾比较粗粒度的分析Nacos配置中心的一些实现,很多细节没有涉及&#…

接口---默认方法

用户操作界面 package Default;public class Dome02interface {public static void main(String[] args) {// 创建实现类对象 // MyInterfaceDefaultA A new MyInterfaceDefaultA(); // A.method01(); // System.out.println("--------------"); // 调用默认方…

Linux下找出吃内存的方法

几个 个 Linux 内存查看方法 1、free命令 2、 vmstat命令 3、 /proc/meminfo 命令 4、 top命令 5、 htop 命令 6、查看进程内存信息 内存性能指标 系统内存使用情况,比如已用内存、剩余内存、共享内存、可用内存、缓存和缓冲区的用量等。 共享内存是通过 tmp…

RISC-V处理器设计(五)—— 在 RISC-V 处理器上运行 C 程序

目录 一、前言 二、从 C 程序到机器指令 三、实验 3.1 实验环境 3.11 Windows 平台下环境搭建 3.12 Ubuntu 平台下环境搭建 3.13 实验涉及到的代码或目录 3.2 各文件作用介绍 3.2.1 link.lds 3.2.2 start.S 3.2.3 lib 和 include 目录 3.2.4 common.mk 3.2.5 demo …

【python海洋专题四十三】海洋指数画法--单色渐变柱状图

【python海洋专题四十三】海洋指数画法–单色渐变柱状图 【python海洋专题四十三】海洋指数画法–单色渐变柱状图 数据:AMO_index 数据:AMO_index 结果展示: 图片 往期推荐 图片 【python海洋专题一】查看数据nc文件的属性并输出属性到txt文件 【python海洋专题二…

C++学习---动态内存

文章目录 堆和栈new和delete操作符数组的动态内存分配对象的动态内存分配 堆和栈 在C中 栈:是一种静态内存分配区域,用于存储局部变量和函数调用的上下文信息。在栈上的内存分配和释放都是自动管理的,遵循后进先出(LIFO&#xf…

从vue源码中看diff算法

一、v-for必须要指定key,其作用是什么? 在源码中有一个函数为,其中就是通过判断两个vnode的type和key进行判断,如果这两个属性相同,那么这两个vnode就是相同,所以在设置key的时候也不可以设置为object等无…

基于SSM的二手车交易网站的设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…

网工内推 | 上市公司,云平台运维,IP认证优先,13薪

01 上海新炬网络信息技术股份有限公司 招聘岗位:云平台运维工程师 职责描述: 1、负责云平台运维,包括例行巡检、版本发布、问题及故障处理、平台重保等,保障平台全年稳定运行; 2、参与制定运维标准规范与流程&#x…

【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割5(训练篇)

在本系列的开篇,就对整个项目训练所需要的所有模块都进行了一个简要的介绍,尤其是针对训练中需要引入的各个结构,进行一个串联操作。 而在之前的数据构建篇和网络模型篇中,都对其中的每一个组块进行了分别的验证,预先…

python3+requests接口自动化测试框架

前段时间由于公司测试方向的转型,由原来的web页面功能测试转变成接口测试,之前大多都是手工进行,利用postman和jmeter进行的接口测试,后来,组内有人讲原先web自动化的测试框架移驾成接口的自动化框架,使用的…

MCU常见通信总线串讲(四)—— SPI总线协议

🙌秋名山码民的主页 😂oi退役选手,Java、大数据、单片机、IoT均有所涉猎,热爱技术,技术无罪 🎉欢迎关注🔎点赞👍收藏⭐️留言📝 获取源码,添加WX 目录 前言一…

什么是API接口测试?这可能是全网最全的教程了!

什么是 API ? API 是“应用程序编程接口”的缩写,是一种允许不同应用程序之间相互通信和交换数据的接口。就好像在餐厅点餐一样,你只需要告诉服务员你想要的食物,而不需要了解厨房中的具体操作,服务员会把你的订单传递…

深入asyncio:构建异步应用

文章目录 异步I/O操作示例:异步网络请求异步任务管理示例:并发执行多个任务使用异步队列示例:生产者-消费者模式在现代软件开发中,异步编程已经成为提高应用性能和响应性的关键技术之一。Python的asyncio库为编写单线程并发代码提供了强大的支持。本文将深入探讨asyncio的三…

CCF CSP认证 历年题目自练Day44

题目一 试题编号: 201612-3 试题名称: 权限查询 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述   授权 (authorization) 是各类业务系统不可缺少的组成部分,系统用户通过授权机制获得系统中各个…

python教程:把多张图片,合并成一张图

D:\Wdpython\environment\Scripts\python.exe D:/Wdpython/爬虫/测试8.py 图片列表 10 [‘刘亦菲/刘亦菲_1.jpg’, ‘刘亦菲/刘亦菲_11.jpg’, ‘刘亦菲/刘亦菲_12.jpg’, ‘刘亦菲/刘亦菲_13.jpg’, ‘刘亦菲/刘亦菲_15.jpg’, ‘刘亦菲/刘亦菲_2.jpg’, ‘刘亦菲/刘亦菲_3.jp…