yolov8+多算法多目标追踪+实例分割+目标检测+姿态估计(代码+教程)

news2024/11/26 5:48:19

多目标追踪+实例分割+目标检测

YOLO (You Only Look Once) 是一个流行的目标检测算法,它能够在图像中准确地定位和识别多个物体。
在这里插入图片描述

本项目是基于 YOLO 算法的目标跟踪系统,它将 YOLO 的目标检测功能与目标跟踪技术相结合,实现了实时的多目标跟踪。

在 目标追踪+语义分割+目标检测项目中,主要做了以下工作

  • 目标检测:利用 YOLO 算法进行目标检测,识别图像或视频中的各种物体,并确定它们的位置和类别。

  • 目标跟踪j:通过使用跟踪算法(如卡尔曼滤波器、光流法等),对检测到的目标进行跟踪,以实现目标在视频序列中的持续跟踪。

  • 实例分割:对目标检测后的目标进行mask,做到实例分割

跟踪算法大集合

  • deepsort:

    深度学习框架下的追踪算法,可以有效地处理遮挡、尺度变化和外观变化等问题。 通过深度特征提取和匹配,能够在复杂场景下实现高准确度的目标追踪。

  • strongsort:

    具有较强的鲁棒性和稳定性,对于复杂背景和光照变化的环境有较好的适应能力。 在处理大量目标时,能够保持较高的追踪质量。

  • ocsort:

    基于外观特征的追踪算法,对目标外观的描述准确度较高,适用于需要精确目标识别的场景。
    在多目标追踪时,能够有效地区分不同目标并保持稳定的追踪状态。

  • bytetrack:

    采用了高效的特征提取和匹配策略,具有较快的处理速度和较低的计算成本。
    在资源受限的环境下,能够提供良好的追踪性能,适用于嵌入式和移动设备等场景。

  • botsort:

    具有较好的可扩展性和灵活性,可以根据具体需求进行定制和优化。
    在复杂多变的追踪场景中,能够通过参数调整和模型配置进行有效适配,提供高度定制化的追踪解决方案。

在这里插入图片描述

优越性

  • 实时性能优化:针对目标跟踪系统的实时性能进行优化,使其能够在实时视频流中高效地进行目标检测和跟踪。

姿态估计

  • 人体关键点检测:通过图像或视频数据,识别并定位出人体的关键点,例如头部、肩膀、手肘、手腕、膝盖、脚踝等关键部位的位置。通常使用的是基于深度学习的关键点检测算法

  • 多目标处理:实现了多目标跟踪功能,能够同时跟踪并管理多个目标,并在复杂场景下保持良好的跟踪性能。

    在这里插入图片描述

  • 应用场景:将 Y项目应用于实际场景,如智能监控、自动驾驶、无人机跟踪等领域,验证其在实际应用中的效果和可靠性。
    在这里插入图片描述

代码部署

  1. requirements,txt列表(优选Linux环境),成功运行的包,兼容性能良好。
  2. 并且将yolov8.pt 和yolov8_seg.pt。放在根目录下。
  3. 或者直接运行脚本,也会在线下载权重文件!
_libgcc_mutex=0.1=main
_openmp_mutex=5.1=1_gnu
absl-py=2.0.0=pypi_0
beautifulsoup4=4.12.2=pypi_0
boxmot=10.0.43=dev_0
ca-certificates=2023.08.22=h06a4308_0
cachetools=5.3.2=pypi_0
certifi=2023.7.22=pypi_0
cfgv=3.4.0=pypi_0
charset-normalizer=3.3.2=pypi_0
contourpy=1.1.1=pypi_0
cycler=0.12.1=pypi_0
cython=3.0.5=pypi_0
dataclasses=0.6=pypi_0
distlib=0.3.7=pypi_0
filelock=3.13.1=pypi_0
filterpy=1.4.5=pypi_0
fonttools=4.43.1=pypi_0
ftfy=6.1.1=pypi_0
future=0.18.3=pypi_0
gdown=4.7.1=pypi_0
gitdb=4.0.11=pypi_0
gitpython=3.1.40=pypi_0
google-auth=2.23.4=pypi_0
google-auth-oauthlib=1.0.0=pypi_0
grpcio=1.59.2=pypi_0
identify=2.5.31=pypi_0
idna=3.4=pypi_0
importlib-metadata=6.8.0=pypi_0
importlib-resources=6.1.0=pypi_0
joblib=1.3.2=pypi_0
kiwisolver=1.4.5=pypi_0
lapx=0.5.5=pypi_0
ld_impl_linux-64=2.38=h1181459_1
libffi=3.4.4=h6a678d5_0
libgcc-ng=11.2.0=h1234567_1
libgomp=11.2.0=h1234567_1
libstdcxx-ng=11.2.0=h1234567_1
loguru=0.7.2=pypi_0
markdown=3.5.1=pypi_0
markupsafe=2.1.3=pypi_0
matplotlib=3.7.3=pypi_0
ncurses=6.4=h6a678d5_0
nodeenv=1.8.0=pypi_0
numpy=1.24.4=pypi_0
oauthlib=3.2.2=pypi_0
opencv-python=4.8.1.78=pypi_0
openssl=3.0.11=h7f8727e_2
packaging=23.2=pypi_0
pandas=2.0.3=pypi_0
pillow=10.1.0=pypi_0
pip=23.3=py38h06a4308_0
platformdirs=3.11.0=pypi_0
pre-commit=3.5.0=pypi_0
protobuf=4.25.0=pypi_0
psutil=5.9.6=pypi_0
py-cpuinfo=9.0.0=pypi_0
pyasn1=0.5.0=pypi_0
pyasn1-modules=0.3.0=pypi_0
pyparsing=3.1.1=pypi_0
pysocks=1.7.1=pypi_0
python=3.8.18=h955ad1f_0
python-dateutil=2.8.2=pypi_0
pytz=2023.3.post1=pypi_0
pyyaml=6.0.1=pypi_0
readline=8.2=h5eee18b_0
regex=2023.10.3=pypi_0
requests=2.31.0=pypi_0
requests-oauthlib=1.3.1=pypi_0
rsa=4.9=pypi_0
scikit-learn=1.3.2=pypi_0
scipy=1.10.1=pypi_0
seaborn=0.13.0=pypi_0
setuptools=68.0.0=py38h06a4308_0
six=1.16.0=pypi_0
smmap=5.0.1=pypi_0
soupsieve=2.5=pypi_0
sqlite=3.41.2=h5eee18b_0
tabulate=0.9.0=pypi_0
tensorboard=2.14.0=pypi_0
tensorboard-data-server=0.7.2=pypi_0
thop=0.1.1-2209072238=pypi_0
threadpoolctl=3.2.0=pypi_0
tk=8.6.12=h1ccaba5_0
torch=1.7.0=pypi_0
torchvision=0.8.1=pypi_0
tqdm=4.66.1=pypi_0
typing-extensions=4.8.0=pypi_0
tzdata=2023.3=pypi_0
ultralytics=8.0.146=pypi_0
urllib3=2.0.7=pypi_0
virtualenv=20.24.6=pypi_0
wcwidth=0.2.9=pypi_0
werkzeug=3.0.1=pypi_0
wheel=0.41.2=py38h06a4308_0
xz=5.4.2=h5eee18b_0
yacs=0.1.8=pypi_0
yolox=0.3.0=pypi_0
zipp=3.17.0=pypi_0
zlib=1.2.13=h5eee18b_0

你只需要输入以下指令:即可配置好环境!!!

 conda create --name yolo_track  --file requiremnts.txt

目标检测运行

运行脚本:

$ python examples/track.py --yolo-model yolov8n       # bboxes only
  python examples/track.py --yolo-model yolo_nas_s    # bboxes only
  python examples/track.py --yolo-model yolox_n       # bboxes only
                                        yolov8n-seg   # bboxes + segmentation masks
                                        yolov8n-pose  # bboxes + pose estimation

目标跟踪

目标跟踪 脚本:

$ python examples/track.py --tracking-method deepocsort
                                             strongsort
                                             ocsort
                                             bytetrack
                                             botsort

ReID 模型

在追踪过程中,一些跟踪方法结合外观描述和运动信息。对于那些使用外观描述的方法,你可以根据自己的需求从 ReID 模型库中选择一个 ReID 模型。这些模型可以通过 reid_export.py 脚本进一步优化以满足你的需求。

$ python examples/track.py --source 0 --reid-model lmbn_n_cuhk03_d.pt               # lightweight
                                                   osnet_x0_25_market1501.pt
                                                   mobilenetv2_x1_4_msmt17.engine
                                                   resnet50_msmt17.onnx
                                                   osnet_x1_0_msmt17.pt
                                                   clip_market1501.pt               # heavy
                                                   clip_vehicleid.pt
                                                   ...

结果展示

下文展示了具体的视频实现效果!

qq1309399183

视频展示链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1182830.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux笔记——Ubuntu子系统从系统盘迁移到非系统盘

Linux笔记——Ubuntu子系统从系统盘迁移到非系统盘 一、子系统迁移1. 关闭linux子系统2. 使用move-wsl进行迁移 二、 虚拟机子系统瘦身 安了子系统还没用几天,C盘提示我没空间了。。。剩余0kb的那种。。。Ubuntu安装的时候默认按C盘了,所以还是移走腾点地…

【神经网络】【GoogleNet】

1、引言 卷积神经网络是当前最热门的技术,我想深入地学习这门技术,从他的发展历史开始,了解神经网络算法的兴衰起伏;同时了解他在发展过程中的**里程碑式算法**,能更好的把握神经网络发展的未来趋势,了解神…

第1天:Python基础语法(一)

** 1、Python简介 ** Python是一种高级、通用的编程语言,由Guido van Rossum于1989年创造。它被设计为易于阅读和理解,具有简洁而清晰的语法,使得初学者和专业开发人员都能够轻松上手。 Python拥有丰富的标准库,提供了广泛的功…

生态环境领域基于R语言piecewiseSEM结构方程模型

结构方程模型(Sructural Equation Modeling,SEM)可分析系统内变量间的相互关系,并通过图形化方式清晰展示系统中多变量因果关系网,具有强大的数据分析功能和广泛的适用性,是近年来生态、进化、环境、地学、…

AI 绘画 | Stable Diffusion 涂鸦功能与局部重绘

在 StableDiffusion图生图的面板里,除了图生图(img2img)选卡外,还有局部重绘(Inpaint),涂鸦(Sketch),涂鸦重绘(Inpaint Sketch),上传重绘蒙版(Inpaint Uplaod)、批量处理&#xff08…

图像标注工具lableImg安装出错怎么办?

我们要训练自己的图像识别模型,首先要进行图像的标注。labelimg就是一款可视化的图像标注工具。它是用Python编写的,通过Qt实现其图形界面,尽管它只支持矩形框标注,但因跨平台,支持Linux、Mac OS、Windows,…

部分iOS机型 new Date() 时间 NAN

部分 iOS 机型 new Date() 时间 NAN 解决代码 是因为部分 iOS 机型 new Date(2023-01-01 00:00:00) 时, 获取时间戳的时间年月日用 - 分隔,将 - 分隔改为 / 分隔即可 new Date(2023/01/01 00:00:00)

【java】实现自定义注解校验——方法二

自定义注解校验的实现步骤: 1.创建注解类,编写校验注解,即类似NotEmpty注解 2.编写自定义校验的逻辑实体类,编写具体的校验逻辑。(这个类可以实现ConstraintValidator这个接口,让注解用来校验) 3.开启使用自定义注解进…

独立开发者学习的技术栈

# 前端 语言 - HTML - CSS/Sass/PostCSS - JavaScript/TypeScriptJS框架 - Vue - NuxtJS - React - NextJS - RemixJS CSS框架 - Tailwindcss - Bulma# 设计语言 - Ant Design - Material Design#后端 语言 - JavaScript/TypeScript - Python - Java - PHP 框架 - NestJS - Exp…

github 上传代码报错 fatal: Authentication failed for ‘xxxxxx‘

问题 今天一时兴起创建了个 github 新仓库,首次上传本地代码时,遇到了一个报错。本来以为是账号密码的问题,搞了好几次,发现都没错的情况下还是上传不上去。目测判断是认证相关问题,具体报错信息如下: rem…

JavaScript基础入门03

目录 1.条件语句 1.1if 语句 1.1.1基本语法格式 1.1.2练习案例 1.2三元表达式 1.3switch 2.循环语句 2.1while 循环 2.2continue 2.3break 2.4for 循环 3.数组 3.1创建数组 3.2获取数组元素 3.3新增数组元素 3.3.1. 通过修改 length 新增 3.3.2. 通过下标新增 …

OpenShift - 利用容器的特权配置实现对OpenShift攻击,以及如何使用 PSA 和 RHACS 防范风险

《OpenShift / RHEL / DevSecOps 汇总目录》 说明:本文已经在 OpenShift 4.14 的环境中验证 本文是《容器安全 - 利用容器的特权配置实现对Kubernetes攻击》的后续篇,来介绍 在 OpenShift 环境中的容器特权配置和攻击过程和 Kubernetes 环境的差异&…

【Spring】Spring IOCDI(万字详解)

文章目录 1. Spring是什么?2. 认识IOC2.1 传统程序开发1. Main.java2. Car.java3. Framework.java4. Bottom.java5. Tire.java 2.2 分析传统开发2.3 IOC程序开发1. Main.java2. Car.java3. Framework.java4. Bottom.java5. Tire.java 2.4 分析IOC开发2.5 IOC容器优点…

零代码编程:用ChatGPT批量将Mp4视频转为Mp3音频

文件夹中有很多mp4视频文件,如何利用ChatGPT来全部转换为mp3音频呢? 在ChatGPT中输入提示词: 你是一个Python编程专家,要完成一个批量将Mp4视频转为Mp3音频的任务,具体步骤如下: 打开文件夹:…

解决Java中https请求接口报错问题

1. 解决SSLException: Certificate for <域名> doesn‘t match any of the subject alternative报错问题 1.1 问题描述 最近在做一个智能问答客服项目,对接的是云问接口,然后云问接口对接使用的是https方式,之前一直…

MySQL | MySQL不区分大小写配置

MySQL不区分大小写配置 1.表内数据条件查询不区分大小写2. 表名字段名不区分大小写 1.表内数据条件查询不区分大小写 MySQL 表内数据条件查询不区分大小写是因为排序规则的问题. 在MySQL中,InnoDB存储引擎默认的字符集是utf8,utf8mb4等,这些字符集再存储数据时没有…

Flink -- 事件时间 Watermark

1、事件时间: 指的是数据产生的时间或是说是数据发生的时间。 在Flink中有三种时间分别是: Event Time:事件时间,数据产生的时间,可以反应数据真实发生的时间 Infestion Time:事件接收时间 Processing Tim…

【机器学习2】模型评估

模型评估主要分为离线评估和在线评估两个阶段。 针对分类、 排序、 回归、序列预测等不同类型的机器学习问题, 评估指标的选择也有所不同。 1 评估指标 1.1准确率 准确率是指分类正确的样本占总样本个数的比例 但是准确率存在明显的问题,比如当负样本…

互联网Java工程师面试题·Spring篇·第六弹

目录 ​编辑 21.什么是 Spring beans? 22、一个 Spring Bean 定义 包含什么? 23、如何给 Spring 容器提供配置元数据? 24、你怎样定义类的作用域? 25、解释 Spring 支持的几种 bean 的作用域。 26、Spring 框架中的单例 bean 是线程安全的吗? 27、解释 …

C/C++(a/b)*c的值 2021年6月电子学会青少年软件编程(C/C++)等级考试一级真题答案解析

目录 C/C(a/b)*c的值 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、程序说明 五、运行结果 六、考点分析 C/C(a/b)*c的值 2021年6月 C/C编程等级考试一级编程题 一、题目要求 1、编程实现 给定整数a、b、c,计算(a / b)*c的值&…