文章开头,我们需要先了解固态硬盘的读写机制。我们知道,固态硬盘的存储单元是由闪存颗粒组成的,无法实现物理性的数据覆盖,只能擦除然后写入,重复这一过程。因而,我们可以想象得到,在实际读写过程中,数据的读写势必会在闪存颗粒上进行多次的擦除写入,特别是当某些区块已经完全被塞满的情况下。
这些多次的操作,增加的写入数量和原始需要写入的数量的比值,就是所谓的写入放大。所以说,写入放大数值高,会损耗固态硬盘寿命。(固态硬盘闪存颗粒有着额定的P/E值,即最大的读写次数,写入放大高,P/E损耗快,寿命低。)在QLC介质中,WAF的影响更加致命。
举个例子,最坏情况下的,假如我要写入一个4KB的数据Z覆盖A,并恰好目标块没有空余的页区,需要进行GC回收。这个时候就需要把B、C、D、E、F五分数据都搬走,然后擦除整个数据块,擦除完成后再整体写入6个数据页。这个整个过程,Host虽然只写了4KB的数据,但实际过程中,由于GC的问题,NAND最终写入了24KB。那么写放大WAF=24KB/4KB=6.
影响WAF的因素有很多:
-
SSD FTL算法的设计会影响写入放大的大小
-
Wear Leveling,WL磨损均衡:这一机制主要是通过均衡所有的闪存颗粒,从而延长整体的使用寿命,然而依旧是增加整体的写放大
-
Over-Provisioning,OP冗余空间:也会影响NAND写入的比例,最终影响写放大
-
Garbage Collection,GC垃圾回收:比如上面的例子,就是GC垃圾回收搬迁数据,擦除数据块后写入带来了整体写放大提升。
-
业务读写的数据模型:随机写和顺序写对NAND的写入比例有非常大的影响,直接影响写放大的系数
-
系统层的TRIM操作:会影响invalid无效数据是否在GC过程中搬迁,对写放大影响也有重要的作用。
写放大WAF是NAND-based SSD寿命消耗的关键参数,WAF越大,寿命消耗越快,越接近1,则寿命消耗越慢,也是最理想的情况。
扩展阅读:SSD写放大的优化策略要统一标准了吗?
NVME FDP(Flexible Data Placement)的出现,就是通过灵活的数据放置使主机服务器能够更好地控制数据在 SSD 中的位置。目标是减少写入放大以提高性能。谷歌和Meta向NVME协议组织提交了Flexible Direct Placement TP4146提案,小编在nvme spec 2.0c还没查到,根据最新消息,预计在NVME spec 2.5正式合入。
通过示意图,来看看FDP的作用。如下图,来自应用程序 A、B 和 C 的混合数据被写入介质中可用的“超级块”。然后,应用程序 A的数据被删除,删除后会触发盘内的GC垃圾回收。完成后,将测量两个模型的写放大 WAF。
-
在传统SSD中,每个应用写的数据是散乱分布不同的Die/Block,需要盘预留空间OP完成垃圾回收数据搬迁,垃圾回收过程中,还有可能会影响前端IO性能。
-
在FDP SSD中,不同的应用程序写入了特定的物理空间,即使某个程序的数据删除,可以针对指定的物理空间执行擦除,减少了不必要的垃圾回收,降低了写放大,同时也避免了对前端IO的影响。
Meta在跟韩国的一家SSD控制器厂商FADU合作中,FDP的功能已被验证可以有效降低写放大,减少了设备磨损,并提高了性能和 QoS。
上图中数据显示:
-
蓝色线是64K随机写,随着盘运行时间的增加,写放大也会不断增加,最后WAF超过3.
-
黄色线是通过软件优化的方式调整数据落盘的方式“Log Structured 8 Writers 64KB”,写放大突增到2-2.4,之后保持正常波动,不再上升。
-
红色线是“Log Structured 8 Writers 64KB with FDP”,在黄色线的基础上,打开FDP,写放大接近1.
如上图,因为写放大的原因,对性能也产生了很大的影响。写放大的变化趋势和性能的变化趋势,基本成反比。
此外,谷歌也在大力推进FDP的落地。根据谷歌公布的数据中心案例数据,基于4K随机写+OP 28%,在使能FDP功能下,写放大从2.5下降到1.25.
谷歌这个案例可以看到FDP带给数据中心的好处有很多:
-
节省OP空间,可以释放更多的存储容量,节省18%的成本。
-
写放大的降低,也会提升盘的使用寿命,让SSD可以使用更长的时间,这部分也会有35%的成本节省。
-
写放大降低后,也相应可以提升盘的性能。同样使能更多盘容量空间。
支持 FDP 的系统架构的前景,其中 WAF ~1 是新常态,应该足以引起任何超大规模运营商的注意。此外,FDP非常容易实现。它与旧主机向后兼容,因此无需升级基础架构。设备读取和其他行为不会更改。
扩展阅读:NVMe SSD:ZNS与FDP对决,你选谁?
读到这里,不知道大家是否有一个疑问,既然FDP这么优秀,会被广泛使用吗?
基于目前小编对FDP的认知,FDP在大型数据中心中应用可能会比较顺畅,Meta/Google也都在全力推进,并已经有突破的进展,但是并不会得到市场广泛应用。主要原因是FDP的实现,是需要对应用负载有清晰的了解,并有一定的软件开发适配。这部分开发适配的代价与使能FDP的收益,估计只有大规模数据中心可以最大化的平衡。