盘点13种即插即用的涨点模块,含注意力机制、卷积变体、Transformer变体

news2024/11/28 4:41:02

朋友们,你们想发paper的时候有没有被创新点、改模型、改代码折磨过?今天我教你们一个前期又快又省事的方法,就是用即插即用的模块“缝合”,加入自己的想法快速搭积木炼丹。

这种方法可以简化模型设计,减少冗余工作,帮助我们快速搭建模型结构,不需要从零开始实现所有组件。除此以外,这些即插即用的模块都具有标准接口,意味着我们可以很方便地替换不同的模块进行比较,加快论文实验迭代的速度。

为方便大家理解和运用,我这次给大家分享13个非常有用的即插即用模块!这些模块既有特别经典的,也有今年最新的,且原文和代码都有。除了源码,还给大家准备了经过提炼的简洁代码,使用起来更加方便。这些模块涵盖了各种注意力机制、卷积变体、Transformer变体等主题。

需要论文原文及模块源码的同学看文末领取

我之前也单独分享过注意力模块和卷积模块,感兴趣的同学看下面传送门↓

注意力机制PyTorch实现!30篇高分Attention论文一次看完!icon-default.png?t=N7T8https://blog.csdn.net/weixin_42645636/article/details/132837731

高效改进CNN!11种即插即用的卷积神经网络优化方法分享!icon-default.png?t=N7T8https://blog.csdn.net/weixin_42645636/article/details/132907128

1.GAM 注意力模块

论文:Global Attention Mechanism: Retain Information to Enhance Channel-Spatial Interactions

全局注意力机制:保留信息以增强通道-空间交互

简介:各种注意力机制被研究用以提高不同计算机视觉任务的性能。然而,之前的方法忽略了保留通道和空间两个方面的信息以增强跨维度交互的重要性。因此,论文提出一种全局注意力机制,通过通道和空间双注意力减少信息损失,增强全局特征交互,从而提升视觉任务的性能。

2.STN模块

论文:Spatial Transformer Networks

空间转换器网络

简介:卷积神经网络定义了一个非常强大的模型类,但仍受限于以计算和参数高效的方式对输入数据空间不变性的缺乏能力。在这项工作中,作者引入了一个新的可学习模块,即空间转换器,它明确地允许网络内的数据进行空间操作。该可微分模块可以插入现有的卷积架构中,赋予神经网络主动根据特征图自身对特征图进行空间变换的能力,而无需任何额外的训练监督或优化过程的修改。

3.SENet 通道注意力模块

论文:Squeeze-and-Excitation Networks

挤压和激励网络

简介:卷积神经网络建立在卷积操作之上,通过在局部感受野内融合空间和通道信息来提取有效特征。为了增强网络的表示能力,几种最近的方法展示了增强空间编码的好处。在本文中,作者关注通道关系,并提出了一种新的架构单元“Squeeze-and-Excitation”(SE)模块,它通过明确建模通道之间的依赖关系,自适应地重新校准通道级特征响应。

4.DConv动态卷积

论文:OMNI-DIMENSIONAL DYNAMIC CONVOLUTION

全维动态卷积

简介:全维动态卷积(ODConv)是一种新颖的卷积模块,可以作为常规卷积的直接替代,插入到许多CNN架构中。它利用多维注意力机制,沿卷积核的所有四个维度(空间大小、输入通道数、输出通道数和核数量)学习核的互补注意力,以获得更强的特征表达能力。ODConv可以显著提升各种CNN网络的性能,包括轻量级和大型模型,同时参数量不增。即使只用单核,它也可以匹敌或超过现有的多核动态卷积模块。

5.完全注意力FANs

论文:Understanding The Robustness in Vision Transformers

理解视觉鹅transformer的鲁棒性

简介:最新的研究显示,视觉Transformer(ViTs)在处理各种图像损坏时表现出很强的鲁棒性。尽管这种鲁棒性部分归因于自注意力机制,但我们对其中的工作原理还不是很清楚。论文通过引入全注意力网络(FANs)中的注意力通道模块,加强了自注意力在学习鲁棒特征表示方面的作用。

6.CA注意力

论文:Coordinate Attention for Efficient Mobile Network Design

移动网络设计的协同注意力机制

简介:移动网络中的通道注意力机制通常会忽略空间位置信息,这对生成位置敏感的注意力图很重要。本文提出了一种坐标注意力机制,将位置编码嵌入到通道注意力中,以获得对位置敏感的注意力。它将通道注意力分解成两个方向的1D特征编码,每个方向聚合一维的特征,这样就可以在一个方向上捕获长程依赖,同时在另一个方向保留精确的位置信息。

7.自适应空间特征融合(ASFF)

论文:Learning Spatial Fusion for Single-Shot Object Detection

空间融合模块用于单镜头物体检测的学习

简介:为了处理物体检测中尺度变化的挑战,金字塔特征表示是常见的做法。但是,基于特征金字塔的单阶段检测器,不同尺度特征之间的不一致性是其主要局限。本文提出了一种新颖的数据驱动的金字塔特征融合策略,即自适应空间特征融合。它可以学习空间过滤冲突信息的方式来抑制不一致性,从而提高特征的尺度不变性,并增加很小的推理开销。

8.全新多尺度融合(CFNet 2023年)

论文:DNET: A CASCADE ENCODER-DECODER NET-WORK FOR DENSE PREDICTION

DNET:用于稠密预测的级联编码器-解码器网络

简介:多尺度特征对稠密预测任务非常重要。现有方法通常在分类骨干网络提取多尺度特征后,采用轻量级模块融合,但因计算资源集中在分类骨干网络,多尺度特征融合往往推迟,导致特征融合不充分。论文提出了一种流线型的级联编码器-解码器网络CEDNet,所有阶段共享编码器-解码器结构,在解码器内进行多尺度特征融合。

9.无参数注意力机制(simAM)

论文:SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks

SimAM:一种用于卷积神经网络的简单无参数注意力模块

简介:论文提出一个简单高效的卷积神经网络注意力模块SimAM。不同于现有逐通道或空间注意力,SimAM不增加网络参数就可以为层内特征图推断三维注意力。具体来说,作者定义一个能量函数并导出闭式解来发现每个神经元的重要性,用少于10行代码实现。SimAM运算符选择基于能量函数解得出,避免结构调优。

10.卷积三重注意力模块

论文:Rotate to Attend: Convolutional Triplet Attention Module

卷积三元组注意力模块

简介:本文研究了一种轻量级但有效的注意力机制——三元组注意力,它通过三分支结构和旋转操作来捕获输入张量不同维度之间的交互,从而计算注意力权重。该方法可以轻松集成到典型的CNN模型中,对计算和参数量影响很小。

11.Selective Query Recollection(SQR)

论文:Enhanced Training of Query-Based Object Detection via Selective Query Recollection

选择性查询回忆增强了基于查询的目标检测的训练

简介:这篇论文研究了基于查询的目标检测器在最后解码阶段预测错误而在中间阶段预测正确的现象。 通过回顾训练过程,作者归因该现象于两个限制:后期阶段缺乏训练强调以及解码顺序导致的级联错误。为此,作者设计了选择性查询回忆(SQR)策略来增强基于查询的目标检测器的训练。该策略累积收集中间查询,并选择性地将其直接输入后期阶段,从而强调后期阶段的训练,并让后期阶段可以直接使用中间查询。

12.CV自动数据增强插件(MedAugment)

论文:MedAugment: Universal Automatic Data Augmentation Plug-in for Medical Image Analysis

医学图像分析的通用自动数据增强插件

简介:本文提出了一个名为MedAugment的可即插即用的数据增强方法,以利用自动的数据增强来推动医学图像分析领域的发展。考虑到自然图像和医学图像的差异,作者将增强空间分为像素增强空间和空间增强空间,并设计了一种新的操作采样策略来从这两个空间中采样增强操作。

13.域泛化语义分割模型

论文:Semantic-Aware Domain Generalized Segmentation

语义感知的域泛化分割

简介:本文提出了一个框架来解决语义分割的域泛化问题,其中分割模型在源域训练后需要在未见的数据分布不同的目标域上进行泛化。该框架包含两个新模块:语义感知正则化(SAN)和语义感知拉伸(SAW)。SAN通过类别级的特征中心对齐来促进不同域之间的域不变性。SAW在已经对齐的特征上施加分布对齐来增强类别间的区分度。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“模块”获取论文原文+模块源码

码字不易,欢迎大家点赞评论收藏!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1177149.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AI技术再刷屏!明星集体“说”外语,有何风险?

近日,一段美国歌手泰勒斯威夫特“说”中文的短视频在网络刷屏,引发热议。 视频中,泰勒斯威夫特“说”着流利中文,音色和讲母语时的音色类似,甚至连口型都能对上。 类似的视频还有很多外国人“说”地道中文、很多中国…

智慧班牌系统全套解决方案 智慧校园云平台

随着智能的不断发展,学校也有了更多智能化的应用,传统教育信息化水平低、校园和班级文化建设、日常教学管理缺少有力的数字抓手,家校通缺乏渠道,无法及时掌握孩子在校情况,学校教育和家庭教育出现断层,存在…

如何本地搭建SeaFile私有云盘并实现远程连接

文章目录 1. 前言2. SeaFile云盘设置2.1 Owncould的安装环境设置2.2 SeaFile下载安装2.3 SeaFile的配置 3. cpolar内网穿透3.1 Cpolar下载安装3.2 Cpolar的注册3.3 Cpolar云端设置3.4 Cpolar本地设置 4.公网访问测试5.结语 1. 前言 现在我们身边的只能设备越来越多&#xff0c…

剑指JUC原理-13.线程池

👏作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家📕系列专栏:Spring源码、JUC源码🔥如果感觉博主的文章还不错的话,请👍三连支持&…

【NI-DAQmx入门】NI-DAQmx之MATLAB/SIMULINK支持

Data Acquisition Toolbox™ 提供用于配置数据采集硬件、将数据读入 MATLAB 和 Simulink 以及将数据写入 DAQ 模拟和数字输出通道的应用程序和函数。该工具箱支持多种 DAQ 硬件,包括来自 National Instruments™ 和其他供应商的 USB、PCI、PCI Express 、PXI 和 PXI…

Verilog使用vscode

使用vscode打开.v文件 Tools setting texteditor vscode文件路径 [line number]:[file name] 安装插件 搜索Verilog 添加使用最多的 添加自动纠错动能,将vivado自带的语法纠错工具添加到环境变量中 完成后命令行检测是否成功 vscode扩展中修改 还可添加

分模块设计与开发

一,分析(在项目开始时就要确认好每个模块的功能) 将一个大型项目拆分成几个模块每个模块分别开发将组件中的实体类和工具类拆分出来方便复用优点:方便维护扩展;也方便模块之间的相互调用资源共享 二,怎么实…

day04_变量丶基本数据类型丶基本数据类型转换

前置知识 计算机世界中只有二进制。那么在计算机中存储和运算的所有数据都要转为二进制。包括数字、字符、图片、声音、视频等。 进制 进制也就是进位计数制,是人为定义的带进位的计数方法 。不同的进制可以按照一定的规则进行转换。 进制的分类 十进制&#x…

STM32 IIC 实验

1. 可以选择I2C1,也可以选择I2C2,或者同时选择,同时运行 配置时钟信号 为节约空间,选择这两个,然后选择GENERATE CODE 二、HAL_I2C_Mem_Write I2C_HandleTypeDef *hi2c:I2C设备句柄 uint16_t DevAddress&am…

棱镜七彩亮相工控中国大会,以软件供应链安全助力新型工业化高质量发展

2023年11月1日-3日,2023第三届工控中国大会在苏州国际会议中心举办,本届大会由中国电子信息产业发展研究院、中国工业经济联合会、国家智能制造专家委员会、国家产业基础专家委员会、江苏省工业和信息化厅、江苏省国有资产监督管理委员会、苏州市人民政府…

MapReduce性能优化之小文件问题和数据倾斜问题解决方案

文章目录 MapReduce性能优化小文件问题生成SequenceFileMapFile案例 :使用SequenceFile实现小文件的存储和计算 数据倾斜问题实际案例 MapReduce性能优化 针对MapReduce的案例我们并没有讲太多,主要是因为在实际工作中真正需要我们去写MapReduce代码的场…

虚幻5.1 常见的效果关闭方式

常见的虚幻效果关闭方式 1.Bloom ProjectSettings->Rendering->Default Settings->Bloom PostProcessVolume->Lens->Bloom 2.Ambient Occlusion/Screen Space Ambient Occlusion(SSAO) ProjectSettings->Rendering->Default Settings->Ambient Occl…

芯片(集成电路)对应大学什么专业?

2022年6月18日,2022软科中国大学专业排名正式发布。此次排名,共有990所高校的30242个专业上榜。榜单中不仅呈现了大学在每个专业的实际排名,还提供了专业评级信息(全国排名前2%或前2名作为A专业的标准)。 其中&#x…

常用设计模式——策略模式

策略模式是什么 策略模式(Strategy):针对一组算法,将每一个算法封装起来,从而使得它们可以相互替换。 比如我们一个软件的会员等级,每一个等级都会有对应的一些等级权益,那么每一个等级权益就…

ucharts 图表

<template><view><cu-custom bgColor"bg-gradual-blue" :isBack"true"><block slot"content">出库统计图</block></cu-custom><view><uni-segmented-control :current"current" :values…

360压缩安装一半不动了怎么办?分享三个简单的方法!

如果您在使用360压缩时遇到安装一半就卡住不动的问题&#xff0c;下面是一些建议和解决方案&#xff0c;主要包括四个方面的解决办法&#xff0c;排查是否是电脑硬件问题、是否为电脑软件问题、是否为360本身的问题&#xff0c;都无法解决&#xff0c;那么只能选择安装其他压缩…

Codeforces Round 906 (Div. 2--ABC)

A.Doremys Paint 3 题目 一个元素全为整数的数组&#xff0c;如果满足相邻两个元素和相同&#xff0c;我们就认定此数组is good。给定一个长度为n的数组a&#xff0c;可以任意改变元素顺序&#xff0c;判定数组a是否is good。 输入 首行t测试数据数量&#xff0c; 每组数据…

Java——》可见性

推荐链接&#xff1a; 总结——》【Java】 总结——》【Mysql】 总结——》【Redis】 总结——》【Kafka】 总结——》【Spring】 总结——》【SpringBoot】 总结——》【MyBatis、MyBatis-Plus】 总结——》【Linux】 总结——》【MongoD…

洗地机哪款好用?洗地机测评排行榜

对于当代年轻人来说&#xff0c;打扫卫生一直是让人头疼的问题&#xff0c;上班一天已经很疲惫了&#xff0c;还要花费很多时间和精力去搞卫生是真的很闹心&#xff0c;特别是对于有小孩的家庭&#xff0c;处理零食碎屑、饭菜那是每天必要的流程&#xff0c;有时候黏在地板上了…

字符串混淆

IDA打开so&#xff0c;在Export里面搜索.datadiv 跟进可以找到混淆的字符串 异或加密的字符串可以直接手动异或恢复 Export里面搜索JNI_OnLoad 如果没有将变量类型改为JavaVM *vm, void *reserved 在这里Load jni.h 一些OLLVM加密的字符串可以直接用Frida来hook function h…