【3D图像分割】基于Pytorch的VNet 3D 图像分割5(改写数据流篇)

news2024/11/28 8:29:12

在这篇文章:【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割2(基础数据流篇) 的最后,我们提到了:

在采用vent模型进行3d数据的分割训练任务中,输入大小是16*96*96,这个的裁剪是放到Dataset类里面裁剪下来的imagemask。但是在训练时候发现几个问题:

  1. 加载数据耗费了很长时间,从启动训练,到正式打印开始按batch循环,这段时间就有30分钟
  2. batch=64, torch.utils.data.DataLoader里面的num_workers=8,训练总是到8的倍数时候,要停顿较长时间等待
  3. 4个GPU并行训练的,GPU的利用率长时间为0,偶尔会升上去,一瞬间又为0
  4. free -m查看的内存占用,发现buffcache会逐步飙升,慢慢接近占满。

请问出现这种情况,会是哪里存在问题啊?模型是正常训练和收敛拟合的也比较好,就是太慢了。分析myDataset数据读取的代码,有几个地方可能是较为耗时,和占用内存的地方:

  1. getAnnotations 函数,需要从csv文件中获取文件名和结节对应坐标,最后存储为一个字典,这个是始终要占着内存空间的;
  2. getNpyFile_Path 函数,dataFile_pathslabelFile_paths都需要调用,有些重复了,这部分的占用是可以降低一倍的;
  3. get_annos_label 函数,也是一样的问题,有些重复了,这部分的占用是可以降低一倍的。

上面这几个函数,都是在类的__init__阶段就完成的,这种多次的循环,可能是在开始batch循环前这部分时间,耗费时间的主要原因;其次,由于重复占用内存,进一步加剧了性能降低,使得后续的训练变的比较慢。

为了解决上面的这些问题,产生了本文2.0 Dataset数据加载的版本,其最大的改动就是将原本从csv文件获取结节坐标的形式,改为从npy文件中获取。这样,image、mask、Bbox都是一一对应的单个文件了。从后续的实际训练发现,也确实是如此,解决了这个耗时的问题,让训练变的很快。

所以,只要我们将牟定的值进行精简,减少__init__阶段的内存占用,这个问题就应该可以完美解决了。所以,本篇就是遵照这个原则,尽量的在数据预处理阶段,就把能不要的就丢弃,只留下最简单的一一结构。将预处理前置,避免在构建数据阶段调用。

LUNA16数据的预处理,可以参照这里,本篇就是通过这里方式,产生的数据,如下:

  • 【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割6(数据预处理)
  • 【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割7(数据预处理)
  • 【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割8(CT肺实质分割)
  • 【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割9(patch 的 crop 和 merge 操作)

一、搭设数据流框架

pytorch中,构建训练用的数据流,都遵循下面这样一个结构。其中主要的思路是这样的:

  1. __init__中,是类初始化阶段,就执行的。在这里需要牟定某个值,将训练需要的内容,都获取到,但尽量少的占用内容和花费时间;
  2. __getitem__中,会根据__init__牟定的那个值,获取到一个图像和标签信息,读取和增强等等操作,最后返回Tensor值;
  3. __len__返回的是一个epoch训练牟定值的长度。

下面就是一个简易的框架结构,留作参考,后续的构建数据流,都可以对这里补充。

class myDataset_v3(Dataset):
    def __init__(self, data_dir, isTrain=True):
        self.data = []

        if isTrain:
        	self.data  ···
        else:
        	self.data  ···

    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        # ********** get file dir **********
        image, label = self.data[index]  # get whole data for one subject

        # ********** change data type from numpy to torch.Tensor **********
        image = torch.from_numpy(image).float()  
        label = torch.from_numpy(label).float()  
        return image, label

在这篇文章中,对这个类里面的参数,进行了详细的介绍,感兴趣的可以直达去学习:【BraTS】Brain Tumor Segmentation 脑部肿瘤分割3(构建数据流)

二、完善框架内容

相信通过前面6、7、8、9四篇博客的介绍,你已经将Luna16的原始数据集,处理成了一一对应的,我们训练所需要的数据形式,包括:

  1. _bboxes.npy:记录了结节中心点的坐标和半径;
  2. _clean.nrrd:CT原始图像数组;
  3. _mask.nrrd:标注文件mask数组,和_clean.nrrdshape一样;

还包括一些其他的.npy,记录的都是整个变换阶段的一些量,在训练阶段是使用不到的,这里就不展开了。最最关注的就是上面三个文件,并且是根据seriesUID一一对应的。

如果是这样的数据情况下,我们构建myDataset_v3(Dataset)数据量,思考:在__init__阶段,可以以哪个为锚点,尽量少占用内存的情况下,将所需要的图像、标注信息都可以在__getitem__阶段,依次获取到呢?

那就是seriesUID的文件名。他是可以一拖三的,并且一个列表就可以了,这样是最节省内存的方式。于是我们在__init__阶段的定义如下:

class myDataset_v3(Dataset):
    def __init__(self, data_dir, crop_size=(16, 96, 96), isTrain=False):
        self.bboxesFile_path = []
        for file in os.listdir(data_dir):
            if '_bboxes.npy' in file:
                self.bboxesFile_path.append(os.path.join(data_dir, file))

        self.crop_size = crop_size
        self.crop_size_z, self.crop_size_h, self.crop_size_w = crop_size
        self.isTrain = isTrain

然后在__len__的定义,就自然而然的知道了,如下:

    def __len__(self):
        return len(self.bboxesFile_path)

最为重要,且最难的,也就是__getitem__的定义,在这里需要做一下几件事情:

  1. 获取各个文件的路径;
  2. 获取文件对应的数据;
  3. 裁剪出目标patch
  4. 数组转成Tensor

然后,在定义__getitem__中,就发现了问题,如下:

    def __getitem__(self, index):
        bbox_path = self.bboxesFile_path[index]
        img_path = bbox_path.replace('_bboxes.npy', '_clean.nrrd')
        label_path = bbox_path.replace('_bboxes.npy', '_mask.nrrd')

        img, img_shape = self.load_img(img_path)
        label 		   = self.load_mask(label_path)
        zyx_centerCoor = self.getBboxes(bbox_path)

    def getBboxes(self, bboxFile_path):
        bboxes_array = np.load(bboxFile_path, allow_pickle=True)
        bboxes_list = bboxes_array.tolist()

        xyz_list = [[zyx[0], zyx[2], zyx[1]] for zyx in bboxes_list]

        return random.choice(xyz_list)

主要是因为一个_bboxes.npy记录的结节坐标点,并不只有一个结节。如果将获取bbox的放到__getitem__,就会发现他一次只能裁剪出一个patch,就不可能对多个结节的情况都处理到。所以我这里采用了random.choice的方式,随机的选择一个结节。

但是,这种方式是不好的,因为他会降低结节在学习过程中出现的次数,尽管是随机的,但是相当于某些类型的数据量变少了。同样学习的epoch次数下,那些只有一个结节的,就被学习的次数相对变多了。

为了解决这个问题,直接将结节数与文件名一一对应起来,这样对于每一个结节来说,机会都是均等的了。代码如下所示:

import os
import random
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import torch
from torch.utils.data import Dataset
import nrrd
import cv2

class myDataset_v3(Dataset):
    def __init__(self, data_dir, crop_size=(16, 96, 96), isTrain=False):
        self.dataFile_path_bboxes = []
        for file in os.listdir(data_dir):
            if '_bboxes.npy' in file:
                one_path_bbox_list = self.getBboxes(os.path.join(data_dir, file))
                self.dataFile_path_bboxes.extend(one_path_bbox_list)

        self.crop_size = crop_size
        self.crop_size_z, self.crop_size_h, self.crop_size_w = crop_size
        self.isTrain = isTrain

    def __getitem__(self, index):
        bbox_path, zyx_centerCoor = self.dataFile_path_bboxes[index]

        img_path = bbox_path.replace('_bboxes.npy', '_clean.nrrd')
        label_path = bbox_path.replace('_bboxes.npy', '_mask.nrrd')

        img, img_shape = self.load_img(img_path)
        # print('img_shape:', img_shape)
        label = self.load_mask(label_path)

        # print('zyx_centerCoor:', zyx_centerCoor)

        cutMin_list = self.getCenterScope(img_shape, zyx_centerCoor)

        if self.isTrain:
            rd = random.random()
            if rd > 0.5:
                cut_list = [cutMin_list[0], cutMin_list[0]+self.crop_size_z, cutMin_list[1], cutMin_list[1]+self.crop_size_h, cutMin_list[2], cutMin_list[2]+self.crop_size_w]  ###  z,y,x
                start1, start2, start3 = self.random_crop_around_nodule(img_shape, cut_list, crop_size=self.crop_size, leftTop_ratio=0.3)
            elif rd > 0.1:
               start1, start2, start3 = self.random_crop_negative_nodule(img_shape, crop_size=self.crop_size)
            else:
                start1, start2, start3 = cutMin_list
        else:
            start1, start2, start3 = cutMin_list

        img_crop = img[start1:start1 + self.crop_size_z, start2:start2 + self.crop_size_h,
                   start3:start3 + self.crop_size_w]
        label_crop = label[start1:start1 + self.crop_size_z, start2:start2 + self.crop_size_h,
                     start3:start3 + self.crop_size_w]

        # print('before:', img_crop.shape, label_crop.shape)
        # 计算需要pad的大小
        if img_crop.shape != self.crop_size:
            pad_width = [(0, self.crop_size_z-img_crop.shape[0]), (0, self.crop_size_h-img_crop.shape[1]), (0, self.crop_size_w-img_crop.shape[2])]
            img_crop = np.pad(img_crop, pad_width, mode='constant', constant_values=0)
        if label_crop.shape != self.crop_size:
            pad_width = [(0, self.crop_size_z-label_crop.shape[0]), (0, self.crop_size_h-label_crop.shape[1]), (0, self.crop_size_w-label_crop.shape[2])]
            label_crop = np.pad(label_crop, pad_width, mode='constant', constant_values=0)

        # print('after:', img_crop.shape, label_crop.shape)
        img_crop = np.expand_dims(img_crop, 0)  # (1, 16, 96, 96)
        img_crop = torch.from_numpy(img_crop).float()

        label_crop = torch.from_numpy(label_crop).long()  # (16, 96, 96) label不用升通道维度
        return img_crop, label_crop

    def __len__(self):
        return len(self.dataFile_path_bboxes)

    def load_img(self, path_to_img):
        if path_to_img.startswith('LKDS'):
            img = np.load(path_to_img)
        else:
            img, _ = nrrd.read(path_to_img)
        img = img.transpose((0, 2, 1))      # 与xyz坐标变换对应
        return img/255.0, img.shape


    def load_mask(self, path_to_mask):
        mask, _ = nrrd.read(path_to_mask)
        mask[mask>1] = 1
        mask = mask.transpose((0, 2, 1))    # 与xyz坐标变换对应
        return mask

    def getBboxes(self, bboxFile_path):
        bboxes_array = np.load(bboxFile_path, allow_pickle=True)
        bboxes_list = bboxes_array.tolist()
        one_path_bbox_list = []
        for zyx in bboxes_list:
            xyz = [zyx[0], zyx[2], zyx[1]]
            one_path_bbox_list.append([bboxFile_path, xyz])

        return one_path_bbox_list

    def getCenterScope0(self, img_shape, zyx_centerCoor):
        cut_list = []  # 切割需要用的数
        for i in range(len(img_shape)):  # 0, 1, 2   →  z,y,x
            if i == 0:  # z
                a = zyx_centerCoor[-i - 1] - self.crop_size_z/2  # z
                b = zyx_centerCoor[-i - 1] + self.crop_size_z/2  # y,z
            else:  # y, x
                a = zyx_centerCoor[-i - 1] - self.crop_size_w/2
                b = zyx_centerCoor[-i - 1] + self.crop_size_w/2

            # 超出图像边界 1
            if a < 0:
                a = self.crop_size_z
                b = self.crop_size_w
            # 超出边界 2
            elif b > img_shape[i]:
                if i == 0:
                    a = img_shape[i] - self.crop_size_z
                    b = img_shape[i]
                else:
                    a = img_shape[i] - self.crop_size_w
                    b = img_shape[i]
            else:
                pass

            cut_list.append(int(a))
            cut_list.append(int(b))

        return cut_list

    def getCenterScope(self, img_shape, zyx_centerCoor):
        img_z, img_y, img_x = img_shape
        zc, yc, xc = zyx_centerCoor

        zmin = max(0, zc - self.crop_size_z // 3)
        ymin = max(0, yc - self.crop_size_h // 2)
        xmin = max(0, xc - self.crop_size_w // 2)

        cutMin_list = [int(zmin), int(ymin), int(xmin)]

        return cutMin_list

    def random_crop_around_nodule(self, img_shape, cut_list, crop_size=(16, 96, 96), leftTop_ratio=0.3):
        """
        :param img:
        :param label:
        :param center:
        :param radius:
        :param cut_list:
        :param crop_size:
        :param leftTop_ratio: 越大,阴性样本越多(需要考虑crop_size)
        :return:
        """
        img_z, img_y, img_x = img_shape
        crop_z, crop_y, crop_x = crop_size
        z_min, z_max, y_min, y_max, x_min, x_max = cut_list
        # print('z_min, z_max, y_min, y_max, x_min, x_max:', z_min, z_max, y_min, y_max, x_min, x_max)

        z_min = max(0, int(z_min-crop_z*leftTop_ratio))
        z_max = min(img_z, int(z_min + crop_z*leftTop_ratio))
        y_min = max(0, int(y_min-crop_y*leftTop_ratio))
        y_max = min(img_y, int(y_min+crop_y*leftTop_ratio))
        x_min = max(0, int(x_min-crop_x*leftTop_ratio))
        x_max = min(img_x, int(x_min+crop_x*leftTop_ratio))

        z_start = random.randint(z_min, z_max)
        y_start = random.randint(y_min, y_max)
        x_start = random.randint(x_min, x_max)

        return z_start, y_start, x_start

    def random_crop_negative_nodule(self, img_shape, crop_size=(16, 96, 96), boundary_ratio=0.5):
        img_z, img_y, img_x = img_shape
        crop_z, crop_y, crop_x = crop_size

        z_min = 0#crop_z*boundary_ratio
        z_max = img_z-crop_z#img_z - crop_z*boundary_ratio
        y_min = 0#crop_y*boundary_ratio
        y_max = img_y-crop_y#img_y - crop_y*boundary_ratio
        x_min = 0#crop_x*boundary_ratio
        x_max = img_x-crop_x#img_x - crop_x*boundary_ratio

        z_start = random.randint(z_min, z_max)
        y_start = random.randint(y_min, y_max)
        x_start = random.randint(x_min, x_max)

        return z_start, y_start, x_start

上述就是本次改写后新的数据流完整代码,没有加入数据增强的操作。在训练时,引入了三种多样性:

  1. 确保mask有结节目标的情况下,随机的变换结节在patch中的位置;
  2. 全图随机的进行裁剪,主要是产生负样本;
  3. 直接使用结节为中心点的方式进行裁剪。

这样做的目的,其实是考虑到结节在patch中的位置,可能会影响到最终的预测。因为最后我们在使用的推理阶段,其实是不知道结节在图像中的哪个位置的,只能遍历所有的patch,然后再将预测的结果拼接成一个完整的mask,进而对mask的处理,知道了所有结节的位置。

这就要求结节无论是出现在图像中的任何位置,都需要找到他,并且尽量少的假阳性。

这块是很少看到论文涉及到的内容,我不清楚是不是论文只关于了指标,而忘记了假阳性这样一个附加产物。还有就是这些patch的获取方式,是预先裁剪下来,直接读取patch数组的形式,进行训练的。这种也不好,多样性不够,还比较的麻烦。

这一小节还要讲的,就是getCenterScoperandom_crop_around_nodule两个函数。getCenterScope中为什么整除3,是因为多次查看,总结出来的。如果是整除2,就发现所有的结节,都偏下,这点的原因,还没有想明白。知道的求留言。

如果是一个二维的平面,已知中心点,那么找到左上角的最小值,那就应该是中心点坐标,减去二分之一的宽高。但是,在z轴也采用减去二分之一的,发现所有裁剪出来的结节就很靠下。

2

所以,这里采用了减去三分之一,让他在z轴上,往上移动了一点。这里的疑问还没有搞明白,知道的评论区求指教。

random_crop_around_nodule是控制了裁剪左上角最小值和最大值的坐标,在这个区间内随机的确定,进而使得结节的裁剪,更加的多样性。如下图所示:

我只要想让每一次的裁剪都有结节在,只需要结节左上角的坐标,落在一定的区间内即可。leftTop_ratio参数,就是用于控制左上角的点,远离左上角的距离。

这个值需要自己根据patch的大小自己决定,多次查看很重要。

三、验证数据流

构建好数据量的类函数,还不能算完。因为你不知道此时的数据流,是不是符合你要求的。所以如果能够模拟训练过程,提前看看每一个patch的结果,那就再好不过了。

本章节就是这个目的,我们把图像和mask通通打出来看看,这样就知道是否存在问题了。查看的方法也比较的简单,可以抄过去用到之后自己的项目里。

def getContours(output):
    img_seged = output.numpy().astype(np.uint8)
    img_seged = img_seged * 255

    # ---- Predict bounding box results with txt ----
    kernel = np.ones((5, 5), np.uint8)
    img_seged = cv2.dilate(img_seged, kernel=kernel)
    _, img_seged_p = cv2.threshold(img_seged, 127, 255, cv2.THRESH_BINARY)
    try:
        _, contours, _ = cv2.findContours(np.uint8(img_seged_p), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    except:
        contours, _ = cv2.findContours(np.uint8(img_seged_p), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    return contours

if __name__=='__main__':
    data_dir = r"./valid"

    dataset_valid = myDataset_v3(data_dir,  crop_size=(48, 96, 96), isTrain=False)  # 送入dataset
    valid_loader = torch.utils.data.DataLoader(dataset_valid,  # 生成dataloader
                                               batch_size=1, shuffle=False,
                                               num_workers=0)  # 16)  # 警告页面文件太小时可改为0
    print("valid_dataloader_ok")
    print(len(valid_loader))
    for batch_index, (data, target) in tqdm(enumerate(valid_loader)):
        name = dataset_valid.dataFile_path_bboxes[batch_index]
        print('name:', name)

        print('image size ......')
        print(data.shape)  # torch.Size([batch, 1, 16, 96, 96])

        print('label size ......')
        print(target.shape)  # torch.Size([2])

        # 按着batch进行显示
        for i in range(data.shape[0]):
            onePatch = data[i, 0, :, :]
            onePatch_target = target[0, :, :, :]
            print('one_patch:', onePatch.shape, np.max(onePatch.numpy()), np.min(onePatch.numpy()))
            fig, ax = plt.subplots(6, 8, figsize=[14, 16])
            for i in range(6):
                for j in range(8):
                    one_pic = onePatch[i * 4 + j]
                    img = one_pic.numpy()*255.0
                    # print('one_pic img:', one_pic.shape, np.max(one_pic.numpy()), np.min(one_pic.numpy()))

                    one_mask = onePatch_target[i * 4 + j]
                    contours = getContours(one_mask)
                    for contour in contours:
                        x, y, w, h = cv2.boundingRect(contour)
                        xmin, ymin, xmax, ymax = x, y, x + w, y + h
                        # print('contouts:', xmin, ymin, xmax, ymax)
                        cv2.drawContours(img, contour, -1, (0, 0, 255), 2)
                        # cv2.rectangle(img, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (0, 0, 255),
                        #               thickness=1)

                    ax[i, j].imshow(img, cmap='gray')
                    ax[i, j].axis('off')


            # print('one_target:', onePatch.shape, np.max(onePatch.numpy()), np.min(onePatch.numpy()))
            fig, ax = plt.subplots(6, 8, figsize=[14, 16])
            for i in range(6):
                for j in range(8):
                    one_pic = onePatch_target[i * 4 + j]
                    # print('one_pic mask:', one_pic.shape, np.max(one_pic.numpy()), np.min(one_pic.numpy()))

                    ax[i, j].imshow(one_pic, cmap='gray')
                    ax[i, j].axis('off')
            plt.show()

显示出来的图像如下所示:

在这里插入图片描述
你可以多看几张,看的多了,也就顺便给验证了结节裁剪的是否有问题。同时,也可以采用训练模型,看看在训练情况下,阳性带结节的样本,和全是黑色的,没有结节的样本占到多少。这也为我们改上面的代码,提供了参考标准。

四、总结

本文其实是对前面博客数据流问题的一个总结,和找到解决问题的方法了。同时将一个验证数据量的过程给展示了出来,方便我们后续更多的其他任务,都是很有好处的。

如果你是一名初学者,我相信该收获满满。如果你是奔着项目来的,那肯定也找到了思路。数据集的差异,主要体现在前处理上,而到了训练阶段,本篇可以帮助你快速的动手。

最后,留下你的点赞和收藏。如果有问题,欢迎评论和私信。后续会将训练和验证的代码进行介绍,这部分同样是重点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1177091.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

家用好物风云汇,值得买风尚购物清单

双十一又要来啦&#xff01;作为购物狂热者的我们&#xff0c;肯定早已经在各大电商平台上准备好了购物清单。但是&#xff0c;如果你还没有找到心仪的好物&#xff0c;那么不妨来看看值得买在线上线下的选品活动。 最近&#xff0c;我在风尚场发现了很多值得买的家用好物&…

js获取url截取文件名或后缀名

示例图 var url "http://localhost:5613/static/挽风.jpg"var lastOf url.lastIndexOf(/) // /所在的最后位置var str url.substr(lastOf 1) //截取文件名称和后缀 输出&#xff1a;挽风.jpgvar strUrl url.substr(0, lastOf) //截取路径字符串 输出&…

【构建一套Spring Cloud项目的大概步骤】【Springcloud Alibaba微服务分布式架构学习资料】

目录 1、创建一个Maven项目2、搭建Spring Cloud服务3、搭建Spring Cloud Eureka4、搭建Spring Cloud Config5、搭建Spring Cloud Consumer6、搭建Spring Cloud Zuul7、使用Jenkins进行代码自动化部署另附录、Springcloud Alibaba微服务分布式架构 1、创建一个Maven项目 在IDEA…

四.pyqt5 登录界面和功能

一.使用qt creator 设置登录界面 主界面为之前设计的界面 from123.py 文章地址&#xff1a;三.listview或tableviw显示 二.导出ui文件为py文件 # from123.py 为导出 py文件 form.ui 为 qt creator创造的 ui 文件 pyuic5 -o x:\xxx\Fromlogin20230809.py form.ui三.python 显…

排查CPU飙高与系统反应慢的问题

今天我要和大家分享的是如何排查系统中的CPU飙高和系统反应慢的问题。在日常的系统运维中&#xff0c;我们可能会遇到这样的问题&#xff0c;因此&#xff0c;我将尽可能详细地介绍排查的步骤&#xff0c;并通过实际的例子来展示如何进行排查。希望大家能够从这篇文章中获得所需…

分享一下微信小程序里怎么创建会员卡功能

在当今的数字化时代&#xff0c;微信小程序已经成为一种广泛使用的应用模式&#xff0c;涵盖了各种行业。对于企业而言&#xff0c;拥有一个会员卡系统可以更好地管理客户&#xff0c;提高客户忠诚度&#xff0c;并促进消费。本文将探讨如何在微信小程序中创建会员卡功能&#…

计算机毕设 基于大数据的股票量化分析与股价预测系统

文章目录 0 前言1 课题背景2 实现效果3 设计原理QTChartsarma模型预测K-means聚类算法算法实现关键问题说明 4 部分核心代码5 最后 0 前言 &#x1f525; 这两年开始毕业设计和毕业答辩的要求和难度不断提升&#xff0c;传统的毕设题目缺少创新和亮点&#xff0c;往往达不到毕…

YOLOv5算法改进(22)— 更换主干网络MobileNetv3 + 添加CA注意力机制

前言:Hello大家好,我是小哥谈。本节课就让我们结合论文来对YOLOv5进行组合改进(更换主干网络MobileNetv3 + 添加CA注意力机制),希望同学们学完本节课可以有所启迪,并且后期可以自行进行YOLOv5算法的改进!🌈 前期回顾: YOLOv5算法改进(1)— 如何去改进YOLOv5算法

智能安全配电装置在临时展会场所中的应用

【摘要】简述了商场临时展会、展摊等场所中电气装置用电的特性&#xff0c;针对此类场所中隐含的电气安全隐患问题&#xff0c;结合智能安全配电装置的功能&#xff0c;从用电设备的接地、线路的安装与敷设、设备的维护和管理等方面介绍了其安全保障技术&#xff0c;以保证此临…

蓝鹏测控平台软件 智能制造生产线的大脑

测控软件平台&#xff0c;是由包括底层驱动程序、通讯协议等&#xff0c;集数据采集、自动反馈控制、信息分析以及多种工程应用于一体的一种电子信息处理平台。 蓝鹏测控软件平台目前支持各种文本标签 、数字标签&#xff1b;支持趋势图、波动图、缺陷图及统计图表。多端口实现…

马斯克的人工智能初创公司xAI推出首款AI助手Grok;吴恩达生成式AI新课

&#x1f989; AI新闻 &#x1f680; 马斯克的人工智能初创公司xAI推出首款AI助手Grok&#xff0c;并放入特斯拉的Premium Plus套餐中 摘要&#xff1a;本周&#xff0c;埃隆马斯克发布了多篇帖子&#xff0c;宣布其人工智能初创公司xAI将推出首款AI助手Grok&#xff0c;并将…

回顾上海2023 SNEC ES+ ,这些精彩瞬间值得定格!

11月3日&#xff0c;为期三天的2023 SNEC ES完美落幕。科士达以13重磅产品、4解决方案惊艳全场。光储场景应用全覆盖&#xff0c;让现场嘉宾沉浸式地感受到科士达在光伏、储能领域的领先技术和匠心品质。下面让我们一起打开展会长卷&#xff0c;再阅精彩。 ​“储”类拔萃&…

Fortigate SSL VPN路径遍历漏洞(CVE-2018-13379)

Fortigate SSL VPN路径遍历漏洞&#xff08;CVE-2018-13379&#xff09; 免责声明漏洞描述漏洞影响漏洞危害网络测绘Fofa: body"FortiToken clock drift detected" 漏洞复现1. 访问链接查看是否存在漏洞2. 查看用户名密码3. 登录后台 免责声明 仅用于技术交流,目的是…

高性能计算HPC存储解决方案的特点

用户利用高性能计算 (HPC) 来执行大规模的复杂计算任务&#xff0c;在短时间内解决复杂问题&#xff0c;遥遥领先于传统计算方法。Infortrend GS 存储解决方案专门针对密集型HPC工作负载进行优化&#xff0c;有效处理来自多个服务器的同时请求并保存分析的数据。我们的解决方案…

Xilinx Vivado IP许可申请

License许可申请地址 1、注册登录账号&#xff1b; 2、找到自己需要的IP核&#xff1b; 3、生成License 4、下载License

国际市场竞争中的品牌生存法则:克服挑战的方法

在全球化时代&#xff0c;国际市场扩张对企业来说是一个重要的战略选择。随着跨国贸易和数字化通信的飞速发展&#xff0c;公司可以更容易地拓展其业务到国际市场。然而&#xff0c;进军国际市场并不是一项容易的任务&#xff0c;伴随着各种复杂的挑战。本文Nox聚星将和大家探讨…

四川思维跳动商务信息咨询有限公司正规吗?

随着抖音等短视频平台的日益普及&#xff0c;越来越多的人开始关注如何在这些平台上进行有效的商业活动。四川思维跳动商务信息咨询有限公司是一家专业的商务信息咨询公司&#xff0c;专注于帮助企业在抖音等短视频平台上实现商业价值。今天&#xff0c;我们将深入探讨四川思维…

vcenter跨版本升级

vcenter跨版本升级&#xff08;比如从6.7升级到7.0&#xff09;1.如果您有VCHA&#xff0c;需要关闭移除 vCenter HA 配置 2. 一定要先做好VC的备份 将VC做一个内存快照以便备份 3.下载好后&#xff0c;在电脑上解压镜像ISO&#xff0c;进入这个文件夹运行程序&#xff0c;并…

打造全球化电商平台,多语言商城系统助您开拓海外市场

全球化进程的加速&#xff0c;越来越多的企业开始将目光投向海外市场。然而&#xff0c;语言和文化差异成为了企业面临的一大挑战。为了帮助企业顺利拓展海外业务&#xff0c;多语言商城系统应运而生。作为一种功能强大的电子商务平台&#xff0c;多语言商城系统具备以下关键功…