计算机毕设 基于大数据的社交平台数据爬虫舆情分析可视化系统

news2025/1/12 3:51:23

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
    • **实现功能**
    • **可视化统计**
    • **web模块界面展示**
    • 3 LDA模型
  • 4 情感分析方法
    • **预处理**
    • 特征提取
    • 特征选择
    • 分类器选择
    • 实验
  • 5 部分核心代码
  • 6 最后


0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 基于大数据的社交平台数据爬虫舆情分析可视化系统

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

1 课题背景

基于Python的社交平台大数据挖掘及其可视化。

2 实现效果

实现功能

  • 实时热点话题检测
  • 情感分析
  • 结果可视化
  • Twitter数据挖掘平台的设计与实现

可视化统计

Hashtag统计
在这里插入图片描述
地理位置信息的可视化

在这里插入图片描述

话题结果可视化

矩阵图

在这里插入图片描述
旭日图

在这里插入图片描述

情感分析的可视化

在这里插入图片描述

web模块界面展示

在这里插入图片描述

3 LDA模型

2003年,D.Blei等人提出了广受欢迎的LDA(Latentdirichlet allocation)主题模型[8]。LDA除了进行主题的分析外,还可以运用于文本分类、推荐系统等方面。

LDA模型可以描述为一个“上帝掷骰子”的过程,首先,从主题库中随机抽取一个主题,该主题编号为K,接着从骰子库中拿出编号为K的骰子X,进行投掷,每投掷一次,就得到了一个词。不断的投掷它,直到到达预计的文本长度为止。简单的说,这一过程就是“随机的选择某个主题,然后从该主题中随机的选择词语”。按照之前的描述,一篇文档中词语生成的概率为:
在这里插入图片描述
可以用矩阵的乘法来表示上述的过程:

回到LDA模型来说,LDA模型的输入是一篇一篇用BOW(bag of words)表示的文档,即用该文档中无序的单词序列来表示该文档(忽略文档中的语法和词语的先后关系)。LDA的输出是每篇文档的主题分布矩阵和每个主题下的单词分布矩阵。简而言之,LDA主题模型的任务就是已知左边的矩阵,通过一些方法,得到右边两个小矩阵。这里的“一些方法”即为LDA采样的方法,目前最主要的有两种,一种是变分贝叶斯推断(variationalBayes, VB),另一种叫做吉布斯采样(Gibbs Sampling),其中吉布斯采样也被称为蒙特卡洛马尔可夫 (Markov Chain Monte Carlo,MCMC)采样方法。

总的来说,MCMC实现起来更加简单方便,而VB的速度比MCMC来得快,研究表明他们具有差不多相同的效果。所以,对于大量的数据,采用VB是更为明智的选择。

4 情感分析方法

本文采用的情感分析可以说是一个标准的机器学习的分类问题。目标是给定一条推文,将其分为正向情感、负向情感、中性情感。

预处理

  • POS标注:CMU ArkTweetNLP
  • 字母连续三个相同:替换 “coooooooool”=>“coool”
  • 删除非英文单词
  • 删除URL
  • 删除@:删除用户的提及@username
  • 删除介词、停止词
  • 否定展开:将以"n’t"结尾的单词进行拆分,如"don’t" 拆分为"do not",这里需要注意对一些词进行特殊处理,如"can’t"拆分完之后的结果为"can not",而不是"ca not"。
  • 否定处理:从否定词(如shouldn’t)开始到这个否定词后的第一个标点(.,?!)之间的单词,均加入_NEG后缀。如perfect_NEG。 “NEG”后缀

特征提取

文本特征

  • N-grams

    • 1~3元模型
    • 使用出现的次数而非频率来表示。不仅是因为使用是否出现来表示特征有更好的效果[16],还因为Twitter的文本本身较短,一个短语不太可能在一条推文中重复出现。
  • 感叹号问号个数

    • 在句子中的感叹号和问号,往往含有一定的情感。为此,将它作为特征。
  • 字母重复的单词个数

    • 这是在预处理中对字母重复三次以上单词进行的计数。字母重复往往表达了一定的情感。
  • 否定的个数

    • 否定词出现后,句子的极性可能会发生翻转。为此,把整个句子否定的个数作为一个特征
  • 缩写词个数等

  • POS 标注为[‘N’, ‘V’, ‘R’, ‘O’, ‘A’] 个数(名词、动词、副词、代词、形容词)

  • 词典特征(本文使用的情感词典有:Bing Lius词库[39]、MPQA词库[40]、NRC Hashtag词库和Sentiment140词库[42]、以及相应的经过否定处理的词库[45])

    • 推文中的单词在情感字典个数 (即有极性的单词个数)
    • 推文的 总情感得分:把每个存在于当前字典单词数相加,到推文的 总情感得分:把每个存在于当前 - 字典单词数相加,到推文的 总情感得分:把每个存在于当前字典单词数相加,到推文总分,这个数作为一特征。
    • 推文中单词最大的正向情感得分和负。
    • 推文中所有正向情感的单词分数 和以及 所有负向情感单词的分数和。
    • 最后一个词的分数
  • 表情特征

    • 推文中正向 情感 和负向的表情个数
    • 最后一个表情的极性是 否为正向

特征选择

本文 特征选择主要是针对于 N-grams 特征 的,采用方法如下:

设定min_df(min_df>=0)以及threshold(0 <= threshold <= 1)
对于每个在N-grams的词:
统计其出现于正向、负向、中性的次数,得到pos_cnt, neg_cnt, neu_cnt,以及出现总数N,然后分别计算
pos = pos_cnt / N
neg = neg_cnt / N
neu = neu_cnt / N
对于 pos,neg,neu中任一一个大于阈值threshold 并且N > min_df的,保留该词,否则进行删除。

上述算法中滤除了低频的词,因为这可能是一些拼写错误的词语;并且,删除了一些极性不那么明显的词,有效的降低了维度。

分类器选择

在本文中,使用两个分类器进行对比,他们均使用sklearn提供的接口 。第一个分类器选用SVM线性核分类器,参数设置方面,C = 0.0021,其余均为默认值。第二个分类器是Logistic Regression分类器,其中,设置参数C=0.01105。

在特征选择上,min_df=5, threshold=0.6。

实验

  • SemEval(国际上的一个情感分析比赛)训练数据和测试数据
  • 评价方法采用F-score
  • 对比SemEval2016结果如下

测试集名

在这里插入图片描述

5 部分核心代码

import json
from django.http import HttpResponse
from django.shortcuts import render
from topic.models.TopicTrendsManager import TopicTrendsManager
from topic.models.TopicParameterManager import TopicParameterManager


def index(request):
    return render(request, 'topic/index.html')


# TODO 检查参数的合法性, and change to post method
def stream_trends(request):
    param_manager = TopicParameterManager(request.GET.items())
    topic_trends = TopicTrendsManager(param_manager)
    res = topic_trends.get_result(param_manager)
    return HttpResponse(json.dumps(res), content_type="application/json")


def stop_trends(request):
    topic_trends = TopicTrendsManager(None)
    topic_trends.stop()
    res = {"stop": "stop success"}
    return HttpResponse(json.dumps(res), content_type="application/json")


def text(request):
    return render(request, 'topic/visualization/result_text.html')


def bubble(request):
    return render(request, 'topic/visualization/result_bubble.html')


def treemap(request):
    return render(request, 'topic/visualization/result_treemap.html')


def sunburst(request):
    return render(request, 'topic/visualization/result_sunburst.html')


def funnel(request):
    return render(request, 'topic/visualization/result_funnel.html')


def heatmap(request):
    return render(request, 'topic/visualization/result_heatmap.html')


def hashtags_pie(request):
    return render(request, 'topic/visualization/result_hashtags_pie.html')


def hashtags_histogram(request):
    return render(request, 'topic/visualization/result_hashtags_histogram.html')


def hashtags_timeline(request):
    return render(request, 'topic/visualization/result_hashtags_timeline.html')

6 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1175340.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Monarch Mixer:一种性能比Transformer更强的网络架构

六年前&#xff0c;谷歌团队在arXiv上发表了革命性的论文《Attention is all you need》。作为一种优势的机器学习网络架构&#xff0c;Transformer技术迅速席卷全球。Transformer一直是现代基础模型背后的主力架构&#xff0c;并且在不同的应用程序中取得了令人印象深刻的成功…

[云原生1. ] Docker consul的详细介绍(容器服务的更新与发现)

文章目录 1. 服务注册与发现的概述1.1 cmp问题1.2 解决方法 2. Consul的概述2.1 简介2.2 为什么要使用Consul服务模块2.2 Consul的服务架构2.3 Consul的一些关键特性 3. consul服务部署3.1 前置准备3.2 Consul服务器3.2.1 建立 Consul 服务3.2.2 设置代理&#xff0c;在后台启动…

Linux开发工具的使用(vim、gcc/g++)

文章目录 vimvim基本概念vim的常用三种模式vim三种模式的相互转换vim命令模式下的命令集移动光标删除文字剪切/删除复制替换撤销和恢复跳转至指定行 vim底行模式下的命令集 gcc/ggcc/g的作用gcc/g的语法预处理编译汇编链接函数库动静态库动态链接的优缺点 静态链接的优缺点 vim…

注意,注意,weak_ptr有坑

class Test { public:Test(){cout << "构造函数\n";}~Test(){cout << "析构函数\n";} }; void *operator new(size_t nsize) {void *ptmp std::malloc(nsize);printf("申请内存:%d,%p\n",nsize, ptmp);return ptmp; }void operator…

【油猴脚本】学习笔记

目录 新建用户脚本模板源注释 测试代码获取图标 Tampermonkey v4.19.0 原教程&#xff1a;手写油猴脚本&#xff0c;几分钟学会新技能——王子周棋洛   Tampermonkey首页   面向 Web 开发者的文档   Greasy Fork 新建用户脚本 打开【管理面板】 点击【】&#xff0c;即…

微服务使用指南

微服务使用指南 1.初识微服务 微服务可以认为是一种分布式架构的解决方案&#xff0c;提供服务的独立性和完整性&#xff0c;做到服务的高内聚、低耦合。 目前服务架构主要包含&#xff1a;单体架构和分布式架构。 1.1 单体架构 单体架构&#xff1a;把所有业务功能模块都…

YoloV8目标检测与实例分割——目标检测onnx模型推理

一、模型转换 1.onnxruntime ONNX Runtime&#xff08;ONNX Runtime或ORT&#xff09;是一个开源的高性能推理引擎&#xff0c;用于部署和运行机器学习模型。它的设计目标是优化执行使用Open Neural Network Exchange&#xff08;ONNX&#xff09;格式定义的模型&#xff0c;…

微信怎么批量保存大量照片

8-2 本文要解决的问题是自动或者快速地保存微信收到的图片的事情&#xff0c;如果你的工作中有一个事情是需要每天或者经常保存大量的从微信收到的图片或者视频的&#xff0c;也许本文适合你&#xff0c;本文介绍的方法&#xff0c;可以自动保存各个群或者人发来的图片和视频。…

【LeetCode每日一题合集】2023.9.18-2023.9.24(⭐拓扑排序⭐设计数据结构:LRU缓存实现 LinkedHashMap⭐)

文章目录 337. 打家劫舍 III&#xff08;树形DP&#xff09;2560. 打家劫舍 IV&#xff08;二分查找动态规划&#xff09;LCP 06. 拿硬币&#xff08;简单贪心模拟&#xff09;2603. 收集树中金币⭐思路——拓扑排序删边 2591. 将钱分给最多的儿童&#xff08;分类讨论&#xf…

MATLAB_5MW风电永磁直驱发电机-1200V直流并网MATLAB仿真模型

仿真软件&#xff1a;matlab2016b 风机传动模块、PMSG模块、蓄电池模块、超级电容模块、无穷大电源、蓄电池控制、风机控制、逆变器控制等模块。 逆变器输出电压&#xff1a; 混合储能系统SOC&#xff1a; 威♥关注“电击小子程高兴的MATLAB小屋”获取更多精彩资料&#xff0…

String的几个常见面试题及其解析

String s3 new String("a") new String("b")会不会在常量池中创建对象&#xff1f; 答案&#xff1a;不会&#xff0c;首先需要解释“”字符串拼接的理解。 采用 运算符拼接字符串时&#xff1a; 如果拼接的都是字符串直接量&#xff0c;则在编译时编…

基于信号功率谱特征和GRNN广义回归神经网络的信号调制类型识别算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 MATLAB2022a 3.部分核心程序 ................................................................ %调制识别 len1 func_f…

【代码】【5 二叉树】d3

关键字&#xff1a; 非叶子结点数、k层叶子结点数、层次遍历、找双亲结点、找度为1、叶子结点数

MySQL EXPLAIN查看执行计划

MySQL 执⾏计划是 MySQL 查询优化器分析 SQL 查询时⽣成的⼀份详细计划&#xff0c;包括表如何连 接、是否⾛索引、表扫描⾏数等。通过这份执⾏计划&#xff0c;我们可以分析这条 SQL 查询中存在的 问题&#xff08;如是否出现全表扫描&#xff09;&#xff0c;从⽽进⾏针对优化…

好用的MybatisX插件~

MybatisX插件&#xff1a; MyBatis-Plus为我们提供了强大的mapper和service模板&#xff0c;能够大大的提高开发效率。但是在真正开发过程中&#xff0c;MyBatis-Plus并不能为我们解决所有问题&#xff0c;例如一些复杂的SQL&#xff0c;多表联查&#xff0c;我们就需要自己去…

Web前端—网页制作(以“学成在线”为例)

版本说明 当前版本号[20231105]。 版本修改说明20231105初版 目录 文章目录 版本说明目录day07-学成在线01-项目目录02-版心居中03-布局思路04-header区域-整体布局HTML结构CSS样式 05-header区域-logo06-header区域-导航HTML结构CSS样式 07-header区域-搜索布局HTML结构CSS…

Gin学习笔记

Gin学习笔记 Gin文档&#xff1a;https://pkg.go.dev/github.com/gin-gonic/gin 1、快速入门 1.1、安装Gin go get -u github.com/gin-gonic/gin1.2、main.go package mainimport ("github.com/gin-gonic/gin""net/http" )func main() {// 创建路由引…

打通你学习C语言的任督二脉-函数栈帧的创建和销毁(上)

&#x1f308;个人主页: Aileen_0v0&#x1f525;系列专栏:C语言学习&#x1f4ab;个人格言:"没有罗马,那就自己创造罗马~" 待解决疑惑: 局部变量是怎么创建的? 为什么局部变量的值是随机值? 函数是怎么传参的?传参的顺序是怎样的? 形参和实参是什么关系? 函数调…

3.25每日一题(知线性常系数方程的特解求线性方程)

思路&#xff1a;通过特解可以知道特征根&#xff0c;通过特征根可以求出特征方程&#xff0c;通过特征方程可以求出线性方程

C语言strcat函数再学习

之前学习了strcat函数&#xff1b;下面继续学习此函数&#xff1b; 它的功能描述是&#xff0c; 功能 把src所指向的字符串&#xff08;包括“\0”&#xff09;复制到dest所指向的字符串后面&#xff08;删除*dest原来末尾的“\0”&#xff09;。要保证*dest足够长&#xff0…