基于鹰栖息算法的无人机航迹规划-附代码

news2025/1/12 10:51:06

基于鹰栖息算法的无人机航迹规划

文章目录

  • 基于鹰栖息算法的无人机航迹规划
    • 1.鹰栖息搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用鹰栖息算法来优化无人机航迹规划。

1.鹰栖息搜索算法

鹰栖息算法原理请参考:https://blog.csdn.net/u011835903/article/details/123363341

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得鹰栖息搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用鹰栖息算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,鹰栖息算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1175268.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ActiveMq学习⑧__ActiveMQ的消息持久化机制

ActiveMQ的消息存储和持久化 MQ的高可用 事务持久签收可持久化 (类似于与mq消息的同步机制) 为了避免意外宕机以后丢失信息,需要做到重启后可以恢复消息队列,消息系统一半都会采用持久化机制。 ActiveMQ的消息持久化机制 Act…

canvas实现刮奖功能

canvas刮奖原理很简单,就是在刮奖区添加两个canvas,第一个canvas用于显示刮开后显示的内容,可以是一张图片或一个字符串,第二个canvas用于显示涂层,可以用一张图片或用纯色填充,第二个canvas覆盖在第一个ca…

逆向学习记录(5)刷机

首要前提:手机刷机必须OEM解锁(BL解锁),否则不能刷机! 1、根据手机机型下载手机系统包,首次登陆网址需要同意协议。然后在右侧选机型,中间就出来各种适合本机型的系统。 下载网址 https://dev…

47基于matlab的水印提取,将水印和载体进行图像融合

基于matlab的水印提取,将水印和载体进行图像融合,成为一体,可对合成图像进行加噪处理,剪切处理,小波压缩处理,旋转处理等操作,最后对合成图像实现水印提取,程序已调通,可…

【AI好好玩02】利用Lama Cleaner本地实现AIGC试玩:擦除对象、替换对象、更换风格等等

目录 一、安装二、擦除功能1. LaMa模型实操实例一:去除路人实操实例二:去水印实操实例三:老照片修复 2. LDM模型3. ZITS模型4. MAT模型5. FcF模型6. Manga模型 三、替换对象功能1. sd1.52. sd23. anything44. realisticVision1.45. 四个模型的…

Tomcat安装配置教程

目录 1、安装tomcat1.1、查看JDK版本1.2、 匹配对应的JDK版本1.3、 下载Tomcat1.3.1、 安装包版(推荐,不用配环境)1.3.2、 压缩包版 2、 运行Tomcat3、 不能运行问题 1、安装tomcat 1.1、查看JDK版本 由于不同版本tomcat对于jdk的版本有要求…

Mac 下安装golang环境

一、下载安装包 安装包下载地址 下载完成,直接继续----->下一步到结束即可安装成功; 安装成功之后,验证一下; go version二、配置环境变量 终端输入vim ~/.zshrc进入配置文件,输入i进行编辑 打开的不管是空文本…

redis教程 二 redis客户端Jedis使用

文章目录 Redis的Java客户端-JedisJedis快速入门创建工程:引入依赖:建立连接测试:释放资源Jedis连接池创建Jedis的连接池改造原始代码 Redis的Java客户端-SpringDataRedis快速入门导入pom坐标配置文件测试代码 数据序列化器StringRedisTempla…

“第六十一天”

这三个也算一类的,减和加的处理差不多,不过这个题多了限制是被减数大于减数,要是想再完整一点,可以把小于的情况也考虑进去,不过这个我是如果被减数小于减数的话,我就用减数加被减数,然后最后打…

JVM 各个参数详解

在一些规模稍大的应用中,Java虚拟机(JVM)的内存设置尤为重要,想在项目中取得好的效率,GC(垃圾回收)的设置是第一步。 PermGen space:全称是Permanent Generation space.就是说是永久…

ActiveMq学习⑤__ActiveMq的Broker

ActiveMq的Broker 是什么? 相当于一个ActiveMq的服务器实例 Broker其实就是实现了用代码的形式启动ActiveMQ将MQ嵌入到Java 代码中,以便随时用随时启动,在用的时候再去启动这样节省了资源,也保证了可靠性。 按照不同的配置文件…

线程的创建、等待、退出

多线程开发在Linux平台上已经有成熟的pthread库支持,所以使用pthread库在编译时要加上-pthread。其设计的多线程开发的基本概念主要包含3点:线程、互斥锁、条件。其中线程操作又分线程的创建、退出、等待三种。互斥锁包含4种操作,分别是创建、…

线程同步——互斥量解锁、解锁

类似与进程间通信信号量的加锁解锁。 对互斥量进行加锁后,任何其他试图在此对互斥量加锁的线程都会被阻塞,直到当前线程释放该互斥锁。如果释放互斥锁时有多个线程被阻塞,所有在该互斥锁上的阻塞线程都会变成可运行状态,第一个变…

《算计》

第一章:机器的诞生 在一个科技高度发达的未来世界,人类社会已经进入了自主机器时代。人们创造出了一种名为“超级自主机器(Super Autonomous Machine,简称SAM)”的全新型机器,它拥有无限的智慧和学习能力&a…

LeetCode.6 N字形变换

一开始想的是真的创建一个数组 去按照题目所给的要求填入数据 最后输出不为空的数组项 但是不仅时间复杂度高 而且错误频繁出现 最终也没有提交成功 查阅题解后发现数组并不重要 假设我们忽略掉数组中的那些空白项 最终输出的结果就是numRows行的字符串的拼接 string conver…

基于Matlab的yolo算法行人检测系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 # 基于Matlab编写的Yolo算法行人检测系统介绍 基于Matlab编写的Yolo算法行人检测系统是一种用于自动检测图像或视频…

SAP中接口与集成

从进化的角度看SAP中接口和集成的十个概念 - 知乎 SAP比较常用的几个接口方式及比较-SAP技术站 1. 文件接口 基于文件交换的接口是从SAP向第三方系统提供数据的最古老的技术之一。将文本或excel文件推送到特定目录或从应用程序服务器中提取;两种方式都有效。在没有…

[云原生2. ] Kubernetes的简单介绍

文章目录 1. Kubernetes 概述1.1 简介1.2 作用1.3 Kubernetes 的特点1.4 Kubernetes 主要功能 2. Kubernetes 集群架构与组件2.1 Master 组件2.1.1 Kube-apiserver2.1.2 Kube-controller-manager2.1.3 Kube-scheduler 2.2 配置存储中心2.2.1 etcd 2.3. Node 组件2.3.1 Kubelet2…

51单片机-定时计数器

文章目录 前言1 原理2.编程 前言 1 原理 2.编程 定时计算: 50ms501000us 一个机器周期:1.085us 65535 - 501000/1.08546082 故 40082*1.08549998.97 /*定时器1,定时模式 工作模式1 16位计数器, 定时20秒后使能蜂鸣器*/ #include…

MP4视频文件损坏怎么修复?

3-2 作为摄影师,或者在平时有拍摄工作的事情的,比如搞婚庆、搞航拍什么的,有一定的概率会遇到损坏的视频文件,比如相机突然断电、无人机炸机等,有可能会导致保存的MP4文件损坏。 这种文件使用播放器播放的话&#xf…