【k8s】pod调度——亲和,反亲和,污点,容忍

news2024/12/23 10:21:59

官方网址:https://kubernetes.io/zh/docs/concepts/scheduling-eviction/assign-pod-node/

一、亲和性

(1)节点亲和性

pod.spec.nodeAffinity
●preferredDuringSchedulingIgnoredDuringExecution:软策略  p开头
●requiredDuringSchedulingIgnoredDuringExecution:硬策略  r开头

(2)Pod 亲和性

pod.spec.affinity.podAffinity/podAntiAffinity
●preferredDuringSchedulingIgnoredDuringExecution:软策略
●requiredDuringSchedulingIgnoredDuringExecution:硬策略

区别:一个节点的标签,一个pod的标签

可以把自己理解成一个Pod,当你报名来学云计算,如果你更倾向去A老师带的班级,把不同老师带的班级当作一个node的话,这个就是节点亲和性。如果你是必须要去A老师带的班级,这就是硬策略;而你说你想去并且最好能去A老师带的班级,这就是软策略
如果你有一个很好的朋友叫lisi,你倾向和lisi同学在同一个班级,这个就是Pod亲和性。如果你一定要去lisi同学在的班级,这就是硬策略;而你说你想去并且最好能去lisi同学在的班级,这就是软策略软策略是不去也可以,硬策略则是不去就不行
 

(3) 键值运算关系

In:label 的值在某个列表中  不在则为pending
NotIn:label 的值不在某个列表中
Gt:label 的值大于某个值
Lt:label 的值小于某个值
Exists:某个 label 存在
DoesNotExist:某个 label 不存在

硬策略实例:

kubectl get nodes --show-labels
NAME     STATUS   ROLES    AGE   VERSION   LABELS
master   Ready    master   11d   v1.20.11   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=master,kubernetes.io/os=linux,node-role.kubernetes.io/master=
node01   Ready    <none>   11d   v1.20.11   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=node01,kubernetes.io/os=linux
node02   Ready    <none>   11d   v1.20.11   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=node02,kubernetes.io/os=linux

//requiredDuringSchedulingIgnoredDuringExecution:硬策略
mkdir /opt/affinity
cd /opt/affinity

vim pod1.yaml
apiVersion: v1
kind: Pod
metadata:
  name: affinity
  labels:
    app: node-affinity-pod
spec:
  containers:
  - name: with-node-affinity
    image: soscscs/myapp:v1
  affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        nodeSelectorTerms:
        - matchExpressions:
          - key: kubernetes.io/hostname    #指定node的标签
            operator: NotIn     #设置Pod安装到kubernetes.io/hostname的标签值不在values列表中的node上
            values::
            - node02    #因为是NotIn所以不能在node02上
			

kubectl apply -f pod1.yaml

kubectl get pods -o wide
NAME       READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES
affinity   1/1     Running   0          13s   10.244.1.30   node01   <none>           <none>

kubectl delete pod --all && kubectl apply -f pod1.yaml && kubectl get pods -o wide

#如果硬策略不满足条件,Pod 状态一直会处于 Pending 状态。

软策略案例:

  • 软限制,会进行按照设置的条件进行匹配,匹配不到,它会自己调度一个node节点

创建pod-nodeaffinity-preferred.yaml

apiVersion: v1
kind: Pod
metadata:
  name: pod-nodeaffinity-preferred
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
  affinity:  #亲和性设置
    nodeAffinity: #设置node亲和性
      preferredDuringSchedulingIgnoredDuringExecution: # 软限制
      - weight: 1
        preference:
          matchExpressions: # 匹配env的值在["xxx","yyy"]中的标签(当前环境没有)
          - key: nodeenv
            operator: In
            values: ["xxx","yyy"]

nodeAffinity规则设置的注意事项

1、如果同时定义了nodeSelector和nodeAffinity,那么必须两个条件都得到满足,Pod才能运行在指定的Node上。

2、如果nodeAffinity指定了多个nodeSelectorTerms,那么只需要其中一个能够匹配成功即可

3、如果一个nodeSelectorTerms中有多个matchExpressions ,则一个节点必须满足所有的才能匹配成功

4、如果一个pod所在的Node在Pod运行期间其标签发生了改变,不再符合该Pod的节点亲和性需求,则系统将忽略此变化

如果把硬策略和软策略合在一起使用,则要先满足硬策略之后才会满足软策略

apiVersion: v1
kind: Pod
metadata:
  name: affinity
  labels:
    app: node-affinity-pod
spec:
  containers:
  - name: with-node-affinity
    image: soscscs/myapp:v1
  affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:   #先满足硬策略,排除有kubernetes.io/hostname=node02标签的节点
        nodeSelectorTerms:
        - matchExpressions:
          - key: kubernetes.io/hostname
            operator: NotIn
            values:
            - node02
      preferredDuringSchedulingIgnoredDuringExecution:  #再满足软策略,优先选择有kgc=a标签的节点
	  - weight: 1
        preference:
          matchExpressions:
          - key: kgc
            operator: In
            values:
            - a

二、Pod亲和性与反亲和性

调度策略            匹配标签    操作符                                        拓扑域支持        调度目标
nodeAffinity        主机        In, NotIn, Exists,DoesNotExist, Gt, Lt        否                指定主机
podAffinity            Pod            In, NotIn, Exists,DoesNotExist                是                Pod与指定Pod同一拓扑域
podAntiAffinity        Pod            In, NotIn, Exists,DoesNotExist                是                Pod与指定Pod不在同一拓扑域
 

kubectl label nodes node01 kgc=a
kubectl label nodes node02 kgc=a

创建一个标签为 app=myapp01 的 Pod

vim pod3.yaml
apiVersion: v1
kind: Pod
metadata:
  name: myapp01
  labels:
    app: myapp01
spec:
  containers:
  - name: with-node-affinity
    image: soscscs/myapp:v1

kubectl apply -f pod3.yaml

kubectl get pods --show-labels -o wide
NAME      READY   STATUS    RESTARTS   AGE   IP           NODE     NOMINATED NODE   READINESS GATES   LABELS
myapp01   1/1     Running   0          37s   10.244.2.3   node01   <none>           <none>            app=myapp01

使用 Pod 亲和性调度,创建多个 Pod 资源

vim pod4.yaml

apiVersion: v1
kind: Pod
metadata:
  name: myapp02
  labels:
    app: myapp02
spec:
  containers:
  - name: myapp02
    image: soscscs/myapp:v1
  affinity:
    podAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
      - labelSelector:
          matchExpressions:
          - key: app
            operator: In
            values:
            - myapp01
        topologyKey: kgc

#仅当节点和至少一个已运行且有键为“app”且值为“myapp01”的标签 的 Pod 处于同一拓扑域时,才可以将该 Pod 调度到节点上。 (更确切的说,如果节点 N 具有带有键 kgc 和某个值 V 的标签,则 Pod 有资格在节点 N 上运行,以便集群中至少有一个具有键 kgc 和值为 V 的节点正在运行具有键“app”和值 “myapp01”的标签的 pod。)
#topologyKey 是节点标签的键。如果两个节点使用此键标记并且具有相同的标签值,则调度器会将这两个节点视为处于同一拓扑域中。 调度器试图在每个拓扑域中放置数量均衡的 Pod。
#如果 kgc 对应的值不一样就是不同的拓扑域。比如 Pod1 在 kgc=a 的 Node 上,Pod2 在 kgc=b 的 Node 上,Pod3 在 kgc=a 的 Node 上,则 Pod2 和 Pod1、Pod3 不在同一个拓扑域,而Pod1 和 Pod3在同一个拓扑域。

kubectl apply -f pod4.yaml

kubectl get pods --show-labels -o wide
NAME      READY   STATUS    RESTARTS   AGE   IP           NODE     NOMINATED NODE   READINESS GATES   LABELS
myapp01   1/1     Running   0          15m   10.244.1.3   node01   <none>           <none>            app=myapp01
myapp02   1/1     Running   0          8s    10.244.1.4   node01   <none>           <none>            app=myapp02
myapp03   1/1     Running   0          52s   10.244.2.53  node02   <none>           <none>            app=myapp03
myapp04   1/1     Running   0          44s   10.244.1.51  node01   <none>           <none>            app=myapp03
myapp05   1/1     Running   0          38s   10.244.2.54  node02   <none>           <none>            app=myapp03
myapp06   1/1     Running   0          30s   10.244.1.52  node01   <none>           <none>            app=myapp03
myapp07   1/1     Running   0          24s   10.244.2.55  node02   <none>           <none>            app=myapp03
 

使用 Pod 反亲和性调度

示例1:
vim pod5.yaml
apiVersion: v1
kind: Pod
metadata:
  name: myapp10
  labels:
    app: myapp10
spec:
  containers:
  - name: myapp10
    image: soscscs/myapp:v1
  affinity:
    podAntiAffinity:
      preferredDuringSchedulingIgnoredDuringExecution:
      - weight: 100
        podAffinityTerm:
          labelSelector:
            matchExpressions:
            - key: app
              operator: In
              values:
              - myapp01
          topologyKey: kubernetes.io/hostname

#如果节点处于 Pod 所在的同一拓扑域且具有键“app”和值“myapp01”的标签, 则该 pod 不应将其调度到该节点上。 (如果 topologyKey 为 kubernetes.io/hostname,则意味着当节点和具有键 “app”和值“myapp01”的 Pod 处于相同的拓扑域,Pod 不能被调度到该节点上。)

kubectl apply -f pod5.yaml

kubectl get pods --show-labels -o wide
NAME      READY   STATUS    RESTARTS   AGE   IP           NODE     NOMINATED NODE   READINESS GATES   LABELS
myapp01   1/1     Running   0          44m   10.244.1.3   node01   <none>           <none>            app=myapp01
myapp02   1/1     Running   0          29m   10.244.1.4   node01   <none>           <none>            app=myapp02
myapp10   1/1     Running   0          75s   10.244.2.4   node02   <none>           <none>            app=myapp03
 

示例2:
vim pod6.yaml
apiVersion: v1
kind: Pod
metadata:
  name: myapp20
  labels:
    app: myapp20
spec:
  containers:
  - name: myapp20
    image: soscscs/myapp:v1
  affinity:
    podAntiAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
      - labelSelector:
          matchExpressions:
          - key: app
            operator: In
            values:
            - myapp01
        topologyKey: kgc

//由于指定 Pod 所在的 node01 节点上具有带有键 kgc 和标签值 a 的标签,node02 也有这个kgc=a的标签,所以 node01 和 node02 是在一个拓扑域中,反亲和要求新 Pod 与指定 Pod 不在同一拓扑域,所以新 Pod 没有可用的 node 节点,即为 Pending 状态。
kubectl get pod --show-labels -owide
NAME          READY   STATUS    RESTARTS   AGE     IP            NODE     NOMINATED NODE   READINESS GATES   LABELS
myapp01       1/1     Running   0          43s     10.244.1.68   node01   <none>           <none>            app=myapp01
myapp20       0/1     Pending   0          4s      <none>        <none>   <none>           <none>            app=myapp03

kubectl label nodes node02 kgc=b --overwrite

kubectl get pod --show-labels -o wide
NAME          READY   STATUS    RESTARTS   AGE     IP            NODE     NOMINATED NODE   READINESS GATES   LABELS
myapp01       1/1     Running   0          7m40s   10.244.1.68   node01   <none>           <none>            app=myapp01
myapp21       1/1     Running   0          7m1s    10.244.2.65   node02   <none>           <none>            app=myapp03

三、污点(Taint) 和 容忍(Tolerations)

//污点(Taint) 
节点亲和性,是Pod的一种属性(偏好或硬性要求),它使Pod被吸引到一类特定的节点。Taint 则相反,它使节点能够排斥一类特定的 Pod。
Taint 和 Toleration 相互配合,可以用来避免 Pod 被分配到不合适的节点上。每个节点上都可以应用一个或多个 taint ,这表示对于那些不能容忍这些 taint 的 Pod,是不会被该节点接受的。如果将 toleration 应用于 Pod 上,则表示这些 Pod 可以(但不一定)被调度到具有匹配 taint 的节点上。

使用 kubectl taint 命令可以给某个 Node 节点设置污点,Node 被设置上污点之后就和 Pod 之间存在了一种相斥的关系,可以让 Node 拒绝 Pod 的调度执行,甚至将 Node 已经存在的 Pod 驱逐出去。

污点的组成格式如下:
key=value:effect

每个污点有一个 key 和 value 作为污点的标签,其中 value 可以为空,effect 描述污点的作用。

当前 taint effect 支持如下三个选项:
●NoSchedule:表示 k8s 将不会将 Pod 调度到具有该污点的 Node 上
●PreferNoSchedule:表示 k8s 将尽量避免将 Pod 调度到具有该污点的 Node 上
●NoExecute:表示 k8s 将不会将 Pod 调度到具有该污点的 Node 上,同时会将 Node 上已经存在的 Pod 驱逐出去

kubectl get nodes
NAME     STATUS   ROLES    AGE   VERSION
master   Ready    master   11d   v1.20.11
node01   Ready    <none>   11d   v1.20.11
node02   Ready    <none>   11d   v1.20.11

//master 就是因为有 NoSchedule 污点,k8s 才不会将 Pod 调度到 master 节点上
kubectl describe node master
......
Taints:             node-role.kubernetes.io/master:NoSchedule


#设置污点
kubectl taint node node01 key1=value1:NoSchedule

#节点说明中,查找 Taints 字段
kubectl describe node node-name  

#去除污点
kubectl taint node node01 key1:NoSchedule-


kubectl get pods -o wide
NAME      READY   STATUS    RESTARTS   AGE     IP           NODE     NOMINATED NODE   READINESS GATES
myapp01   1/1     Running   0          4h28m   10.244.2.3   node02   <none>           <none>
myapp02   1/1     Running   0          4h13m   10.244.2.4   node02   <none>           <none>
myapp03   1/1     Running   0          3h45m   10.244.1.4   node01   <none>           <none>

kubectl taint node node02 check=mycheck:NoExecute

//查看 Pod 状态,会发现 node02 上的 Pod 已经被全部驱逐(注:如果是 Deployment 或者 StatefulSet 资源类型,为了维持副本数量则会在别的 Node 上再创建新的 Pod)
kubectl get pods -o wide
NAME      READY   STATUS    RESTARTS   AGE     IP           NODE     NOMINATED NODE   READINESS GATES
myapp03   1/1     Running   0          3h48m   10.244.1.4   node01   <none>           <none>


//容忍(Tolerations)
设置了污点的 Node 将根据 taint 的 effect:NoSchedule、PreferNoSchedule、NoExecute 和 Pod 之间产生互斥的关系,Pod 将在一定程度上不会被调度到 Node 上。但我们可以在 Pod 上设置容忍(Tolerations),意思是设置了容忍的 Pod 将可以容忍污点的存在,可以被调度到存在污点的 Node 上。

kubectl taint node node01 check=mycheck:NoExecute

vim pod3.yaml
 
    
kubectl apply -f pod3.yaml

在两个 Node 上都设置了污点后,此时 Pod 将无法创建成功

kubectl get pods -o wide
NAME      READY   STATUS    RESTARTS   AGE   IP       NODE     NOMINATED NODE   READINESS GATES
myapp01   0/1     Pending   0          17s   <none>   <none>   <none>           <none>
 

vim pod3.yaml
apiVersion: v1
kind: Pod
metadata:
  name: myapp01
  labels:
    app: myapp01
spec:
  containers:
  - name: with-node-affinity
    image: soscscs/myapp:v1
  tolerations:
  - key: "check"
    operator: "Equal"
    value: "mycheck"
    effect: "NoExecute"
    tolerationSeconds: 3600

#其中的 key、vaule、effect 都要与 Node 上设置的 taint 保持一致
#operator 的值为 Exists 将会忽略 value 值,即存在即可
#tolerationSeconds 用于描述当 Pod 需要被驱逐时可以在 Node 上继续保留运行的时间
 

kubectl apply -f pod3.yaml
 

//在设置了容忍之后,Pod 创建成功
kubectl get pods -o wide
NAME      READY   STATUS    RESTARTS   AGE   IP           NODE     NOMINATED NODE   READINESS GATES
myapp01   1/1     Running   0          10m   10.244.1.5   node01   <none>           <none>

//其它注意事项
(1)当不指定 key 值时,表示容忍所有的污点 key
  tolerations:
  - operator: "Exists"
  
(2)当不指定 effect 值时,表示容忍所有的污点作用
  tolerations:
  - key: "key"
    operator: "Exists"

(3)有多个 Master 存在时,防止资源浪费,可以如下设置
kubectl taint node Master-Name node-role.kubernetes.io/master=:PreferNoSchedule

//如果某个 Node 更新升级系统组件,为了防止业务长时间中断,可以先在该 Node 设置 NoExecute 污点,把该 Node 上的 Pod 都驱逐出去
kubectl taint node node01 check=mycheck:NoExecute

//此时如果别的 Node 资源不够用,可临时给 Master 设置 PreferNoSchedule 污点,让 Pod 可在 Master 上临时创建
kubectl taint node master node-role.kubernetes.io/master=:PreferNoSchedule

//待所有 Node 的更新操作都完成后,再去除污点
kubectl taint node node01 check=mycheck:NoExecute-

维护操作
//cordon 和 drain
##对节点执行维护操作:
kubectl get nodes

//将 Node 标记为不可调度的状态,这样就不会让新创建的 Pod 在此 Node 上运行
kubectl cordon <NODE_NAME>          #该node将会变为SchedulingDisabled状态

//kubectl drain 可以让 Node 节点开始释放所有 pod,并且不接收新的 pod 进程。drain 本意排水,意思是将出问题的 Node 下的 Pod 转移到其它 Node 下运行
kubectl drain <NODE_NAME> --ignore-daemonsets --delete-local-data --force

--ignore-daemonsets:无视 DaemonSet 管理下的 Pod。
--delete-local-data:如果有 mount local volume 的 pod,会强制杀掉该 pod。
--force:强制释放不是控制器管理的 Pod,例如 kube-proxy。

注:执行 drain 命令,会自动做了两件事情:
(1)设定此 node 为不可调度状态(cordon)
(2)evict(驱逐)了 Pod

//kubectl uncordon 将 Node 标记为可调度的状态
kubectl uncordon <NODE_NAME>


//Pod启动阶段(相位 phase)
Pod 创建完之后,一直到持久运行起来,中间有很多步骤,也就有很多出错的可能,因此会有很多不同的状态。
一般来说,pod 这个过程包含以下几个步骤:
(1)调度到某台 node 上。kubernetes 根据一定的优先级算法选择一台 node 节点将其作为 Pod 运行的 node
(2)拉取镜像
(3)挂载存储配置等
(4)运行起来。如果有健康检查,会根据检查的结果来设置其状态。

phase 的可能状态有:
●Pending:表示APIServer创建了Pod资源对象并已经存入了etcd中,但是它并未被调度完成(比如还没有调度到某台node上),或者仍然处于从仓库下载镜像的过程中。

●Running:Pod已经被调度到某节点之上,并且Pod中所有容器都已经被kubelet创建。至少有一个容器正在运行,或者正处于启动或者重启状态(也就是说Running状态下的Pod不一定能被正常访问)。

●Succeeded:有些pod不是长久运行的,比如job、cronjob,一段时间后Pod中的所有容器都被成功终止,并且不会再重启。需要反馈任务执行的结果。

●Failed:Pod中的所有容器都已终止了,并且至少有一个容器是因为失败终止。也就是说,容器以非0状态退出或者被系统终止,比如 command 写的有问题。

●Unknown:表示无法读取 Pod 状态,通常是 kube-controller-manager 无法与 Pod 通信。


##故障排除步骤:
//查看Pod事件
kubectl describe TYPE NAME_PREFIX  

//查看Pod日志(Failed状态下)
kubectl logs <POD_NAME> [-c Container_NAME]

//进入Pod(状态为running,但是服务没有提供)
kubectl exec –it <POD_NAME> bash

//查看集群信息
kubectl get nodes

//发现集群状态正常
kubectl cluster-info

//查看kubelet日志发现
journalctl -xefu kubelet

+

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1174478.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

试利用栈的基本操作写出先序遍历二叉树的非递归形式的算法

试利用栈的基本操作写出先序遍历二叉树的非递归形式的算法 代码思路&#xff1a; 要用栈解决先序遍历&#xff0c;我们首先要知道栈的性质和二叉树先序遍历的规则 栈最基本的就是先进后出 而二叉树先序遍历就是“根左右” 利用这两个性质&#xff0c;我们可以先将根结点入队…

【软件测试】其实远远不止需求文档这么简单

我们都知道&#xff0c;软件测试是一门依赖性很强的综合技术&#xff0c;软件测试工程师在施行自己的工作时&#xff0c;总是要依赖其他团队的产出。 比如&#xff0c;我们要依赖着需求团队给出的需求分析说明书来确定测试的方向&#xff0c;又要依赖开发团队产出的实际代码产品…

JavaScript_Date对象_实例方法_get类

计算这一年还剩多少天&#xff1a; <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta name"viewport" content"widthdevice-width, initial-scale1.0"> <title>Document&…

oracle-sql语句执行过程

客户端输入sql语句。 sql语句通过网络到达数据库实例。 服务器进程(server process)接收到sql语句。 sql – 解析成执行计划&#xff0c;然后sql才能执行。 会将sql和sql的执行计划缓存到共享池中。解析: 会消耗很多资源。 从数据库找数据&#xff0c;先从buffer cache中找&a…

自定义注解格式化处理BigDecimal

目录 一、场景描述 二、实现步骤 1、自定义类 2、使用注解 3、测试 一、场景描述 在开发过程中&#xff0c;如果有实体类的属性中存在BigDecimal的属性&#xff0c;并且需要对其进行校验&#xff0c;例如&#xff1a;限制BigDecimal的小数点位数是两位。但目前没有注解可以…

第六章 块为结构建模 P1|系统建模语言SysML实用指南学习

仅供个人学习记录 概述 块是SysML结构中的模块单元&#xff0c;用于定义一类系统、部件、部件互连&#xff0c;或者是流经系统的项&#xff0c;也用于定义外部实体、概念实体或其他逻辑抽象 块定义图用于定义块以及块之间的相互关系&#xff0c;如层级关系&#xff0c;也用于…

搭建WAMP网站教程(windows+apache+mysql+php)

之前为了学习网络安全&#xff0c;从搭建网站学起&#xff0c;对网站运行有个初步的了解。 今天翻到了之前的笔记&#xff0c;顺手发到csdn上了。 搭建网站步骤 一、Apache 安装Apache&#xff0c;下载Apache之后把Apache解压&#xff0c;此处解压到C:\目录下 2.然后要记得安…

pg14-sql基础(三)-分组统计

分组 SELECT hire_date, COUNT(*) FROM employees GROUP BY hire_date;SELECT extract(year from hire_date), COUNT(*) FROM employees GROUP BY extract(year from hire_date); -- GROUP BY 1;SELECT extract(year from hire_date), department_id, COUNT(*) FROM employees…

MFC 基础篇(一)

目录 一.SDK编程 二.为什么要学MFC&#xff1f; 三.MFC能做什么&#xff1f; 四.MFC开发环境搭建 五.MFC项目创建 六.消息映射机制 一.SDK编程 Application Programming Interface 应用程序编程接口。 Software Development Kit 软件开发工具包&#xff0c;一般会包括A…

自动化测试之争:code vs codeless

在TesterHome看到的一个话题&#xff0c;当我们选择做自动化时是否需要code 或者codeless。 code方案 用code去做自动化&#xff0c;实现过程就是拿个IDE撸代码。 python pytest/unittest appium/selenium/requests ... Java Junit/testNG appium/selenium/requests .…

volatile-无原子性案例详解

package com.nanjing.gulimall.zhouyimo.controller;import java.util.concurrent.TimeUnit;/*** author zhou* version 1.0* date 2023/11/5 7:56 下午*/ class MyNumber{int number;public synchronized void add(){number;} } public class VolatileNoAtomicDemo {public st…

git进阶

1、git&#xff1a;为分布式版本控制工具 2、 当新创建一个文件后&#xff0c;文件通过指令可以到达暂存区&#xff0c;暂存区是仓库和工作区的缓冲区域 当commit后&#xff0c;会把文件放入本地仓库&#xff0c;每一次commit都会创建一个版本 《小区域》 git status 《查看…

python- 学生信息管理系统

偶然整的学生信息管理系统一个学生信息管理系统&#xff0c;包括录入学生信息、查找学生信息、删除学生信息、修改学生信息、排序学生信息、统计学生总数和显示所有学生信息等功能 开发环境要求本系统的软件开发及运行环境具体如下。 操作系统&#xff1a;Windows 10。 Python…

知乎日报第三周总结

这周主要完成了评论的加载和长评论的展开与收起&#xff0c;同时完善了前面的内容&#xff0c;文章内容cell的滑动刷新改为滑动一个加载一个&#xff0c;这样就更加流畅&#xff1b;还有就是首次点击只先加载当前cell内容&#xff0c;这样就不会卡顿加载过多内容&#xff0c;剩…

MySQL(9):子查询

子查询 指一个查询语句嵌套在另一个查询语句内部的查询&#xff0c;这个特性从MySQL 4.1开始引入。 SQL 中子查询的使用大大增强了 SELECT 查询的能力&#xff0c;因为很多时候查询需要从结果集中获取数据&#xff0c;或者需要从同一个表中先计算得出一个数据结果&#xff0c;…

python学习10

前言&#xff1a;相信看到这篇文章的小伙伴都或多或少有一些编程基础&#xff0c;懂得一些linux的基本命令了吧&#xff0c;本篇文章将带领大家服务器如何部署一个使用django框架开发的一个网站进行云服务器端的部署。 文章使用到的的工具 Python&#xff1a;一种编程语言&…

Mybatis技术原理详解之:使用Mapper形式和注解驱动的复杂映射开发

Mybatis技术原理详解之&#xff1a;使用Mapper形式和注解驱动的复杂映射开发 Mapper形式的复杂映射开发 一对一查询 一对一查询的模型 ⽤户表和订单表的关系为&#xff0c;⼀个⽤户有多个订单&#xff0c;⼀个订单只从属于⼀个⽤户 ⼀对⼀查询的需求&#xff1a;查询⼀个订…

AFL入门教学

1、AFL简介 AFL&#xff08;American Fuzzy Lop&#xff09;是一个面向安全的模糊测试工具&#xff0c;它使用了一个新的编译时插桩技术和遗传算法&#xff0c;可以自动发现触发目标二进程程序的测试用例&#xff0c;从而大大提高测试代码的功能覆盖率。 AFL官网&#xff1a;…

090基于web+springboot的中小企业设备管理系统

欢迎大家关注&#xff0c;一起好好学习&#xff0c;天天向上 文章目录 一项目简介技术介绍 二、功能组成三、效果图四、 文章目录 一项目简介 本中小企业设备管理系统管理员有个人中心&#xff0c;用户管理&#xff0c;员工管理&#xff0c;设备信息管理&#xff0c;配件信息管…

计算机报错找不到msvcp110.dll无法继续执行代码怎么解决?

msvcp110.dll文件丢失是一个相当常见的问题&#xff0c;尤其是在运行某些程序或游戏时。这个问题可能会导致程序无法正常运行&#xff0c;甚至可能导致系统崩溃。那么&#xff0c;面对这样的问题&#xff0c;我们应该如何来解决呢&#xff1f;下面&#xff0c;我将分享我解决问…