💡💡💡本文全网首发独家改进:提出新颖的注意力BSAM(BiLevel Spatial Attention Module),创新度极佳,适合科研创新,效果秒杀CBAM,Channel Attention+Spartial Attention升级为新颖的 BiLevel Attention+Spartial Attention
1)作为注意力BSAM使用;
推荐指数:五星
BSAM VS CBAM | 野外烟雾检测 mAP50 0.968 VS 0.953
1.YOLOv8介绍
Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的(SOTA)模型,它建立在先前YOLO成功基础上,并引入了新功能和改进,以进一步提升性能和灵活性。它可以在大型数据集上进行训练,并且能够在各种硬件平台上运行,从CPU到GPU。
具体改进如下:
-
Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;
-
PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;
-
Decoupled-Head:是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;
-
Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;
-
损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;
-
样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式
框架图提供见链接:Brief summary of YOLOv8 model structure · Issue #189 · ultralytics/ultralytics · GitHub
2.野外火灾烟雾数据集介绍
数据集大小737张,train:val:test 随机分配为7:2:1,类别:smoke
3.BSAM 介绍
Channel Attention+Spartial Attention升级为新颖的 BiLevel Attention+Spartial Attention
详见:YOLOv8独家原创改进:自研独家创新BSAM注意力 ,基于CBAM升级-CSDN博客
3.1.CBAM:通道注意力和空间注意力的集成者
轻量级的卷积注意力模块,它结合了通道和空间的注意力机制模块
论文题目:《CBAM: Convolutional Block Attention Module》
论文地址: https://arxiv.org/pdf/1807.06521.pdf
上图可以看到,CBAM包含CAM(Channel Attention Module)和SAM(Spartial Attention Module)两个子模块,分别进行通道和空间上的Attention。这样不只能够节约参数和计算力,并且保证了其能够做为即插即用的模块集成到现有的网络架构中去。
4.实验结果对比
CBAM
BSAM