【马蹄集】—— 百度之星 2023

news2025/1/18 21:05:00

百度之星 2023



目录

  • BD202301 公园⭐
  • BD202302 蛋糕划分⭐⭐⭐
  • BD202303 第五维度⭐⭐




BD202301 公园⭐

难度:钻石    时间限制:1秒    占用内存:64M
题目描述

今天是六一节,小度去公园玩,公园一共 N N N 个景点,正巧看到朋友圈度度熊也在这个公园玩,于是他们约定好一块去景点 N N N。小度当前所在景点编号为 T T T,从一个景点到附近的景点需要消耗的体力是 T E TE TE,而度度熊所在景点编号为 F F F,移动消耗为 F E FE FE。好朋友在一块,赶路都会开心很多,所以如果小度和度度熊一块移动(即在相同位置向相同方向移动),每一步他俩的总消耗将会减少 S S S

求他俩到景点 N N N 时,所需要的总消耗最少是多少?

格式

输入格式:
第一行三个数值 T E ,   F E ,   S TE,\ FE,\ S TE, FE, S,分别代表小度移动消耗值,度度熊移动消耗值,一起移动的消耗减少值。 1 ≤ T E ,   F E ,   S ≤ 4000 ,   S ≤ T E + F E 1\le TE,\ FE,\ S\le4000,\ S\le TE+FE 1TE, FE, S4000, STE+FE
第二行四个数值 T ,   F ,   N ,   M T,\ F,\ N,\ M T, F, N, M,分别代表小度出发点,度度熊出发点,目标节点,总路径数。 1 ≤ T ,   F ,   N ,   M ≤ 40000 1\le T,\ F,\ N,\ M\le40000 1T, F, N, M40000
接下来 M M M 行,每行两个整数 X , Y X,Y X,Y,代表连通的两个景点。 1 ≤ X , Y ≤ N 1\le X,Y\le N 1X,YN
输出格式:
一个整数,即总消耗最小值。如果不能到达 N N N,输出 -1

样例 1

输入:
4 4 3
1 2 8 8
1 4
2 3
3 4
4 7
2 5
5 6
6 8
7 8

输出:

22


相关知识点:广度优先搜索


题解


这道题给出了各点之间的可达关系和代价(不同角色的代价不同),最终要求出两个人到终点所需消耗的最低能量。对于这种点之间为可达关系而不是距离的走迷宫问题,其对应图的邻接关系通常是个稀疏阵,这时,切不可用二维数组来存放该图,而要用邻接表。一方面可避免爆内存的风险,另一方面则能大大加快对图的搜索速度。

在这里插入图片描述

接下来我们思考如何寻找具有最低能耗的路线。由于题目指出“如果小度和度度熊一块移动,每一步他俩的总消耗将会减少”,因此从贪心的角度出发,自然是越早碰面越有利于降低总能耗。但是,存在一种情况,即在追求“尽早碰面”的过程中付出了巨大代价,那么这样的碰面还不如各自走自己的。因此,对本题寻找最低能耗的路线而言,很难通过贪心的思路来求解。

在这样的情况下,最简单有效的办法就是枚举。即逐个枚举中间节点作为碰面点,并以此计算在这种方案下的总能耗。最终,输出所有方案里的最低能耗即可。由于每次枚举一个点作为见面点时,都需要计算 T 和 F 到 O 的距离,以及 O 到 N 的距离。为了降低时间开销,我们可事先算出 T、F 到其余各点的距离,以及各点到终点 O 的距离。这样一来,每次在枚举时就不再需要单独计算各段距离,而是直接取值。

下面直接给出基于以上思路得到的求解本题的完整代码:

/*
    BD202301 公园 
    深度优先搜索 
*/
#include<bits/stdc++.h> 
using namespace std; 

const int MAX = 4e4+5;
// 存放各点之间的可达关系(稀疏阵) 
vector<int> v[MAX];
// 分别存放从T、F 和N到其他所有点之间的最短距离
int pt[MAX], pf[MAX], pn[MAX];

// 计算从 start 出发到其余所有点的最短距离
void bfs(int start, int dis[])
{
    // 初值统一赋为一个较大的值
    for(int i=0; i<MAX; i++) dis[i] = MAX;
    // 广度优先搜索求最短距离 
    queue<int> q; 
    q.push(start); 
    dis[start] = 0;
    while(!q.empty()){
        int cur = q.front(); q.pop();
        // 遍历邻接点 
        for(int i=0; i<v[cur].size(); i++) {
            int neighbor = v[cur][i]; 
            if(dis[neighbor] > dis[cur]+1) {
                q.push(neighbor);
                dis[neighbor] = dis[cur] + 1;
            }
        }
    }
}

int main()
{
    // 获取输入
    int TE, FE, S, T, F, N, M, X, Y;
    cin>>TE>>FE>>S;
    cin>>T>>F>>N>>M;
    for(int i=0; i<M; i++){
        cin>>X>>Y;
        v[X].push_back(Y);
        v[Y].push_back(X);
    }
    // 寻找从小度(T)、小熊(F)到其余各点的最短路径以及各点到目的地(N)的最短距离 
    bfs(T, pt), bfs(F, pf), bfs(N, pn);
    // 若两个点都无法到达终点,则输出 -1 
    if (pt[N] == MAX || pf[N] == MAX)
        cout<<"-1"<<endl;
    else{
        // 最坏情况下各自单独去终点 
        int ans = pt[N] * TE + pf[N] * FE, tmp; 
        // 枚举所有点作为见面地点,查找是否存在更低的能量消耗情况 
        for (int i = 1; i < N; i++) { 
            tmp = pt[i] * TE + pf[i] * FE + pn[i] * (TE+FE-S);
            ans = min(ans, tmp);
        }
        cout<<ans<<endl;
    }
    return 0;
} 


BD202302 蛋糕划分⭐⭐⭐

难度:星耀    时间限制:1秒    占用内存:64M
题目描述

小度准备切一个蛋糕。这个蛋糕的大小为 N × N N\times N N×N,蛋糕每个部分的重量并不均匀。

小度一共可以切 K K K 刀,每一刀都是垂直或者水平的,现在小度想知道在切了 K K K 刀之后,最重的一块蛋糕最轻的重量是多少。

格式

输入格式:第一行包含 N N N K K K。其中: 2 ≤ N ≤ 15 ,    1 ≤ K ≤ 2 N − 2 2\le N\le15,\ \ 1\le K\le2N-2 2N15,  1K2N2
     第二到第 1 + N 1+N 1+N 行每行 N N N 个数字,描述这一行蛋糕每个位置的重量 W W W 。其中: 0 ≤ W ≤ 1000 0\le W\le1000 0W1000
输出格式:输出一个整数,最重的一块蛋糕最轻是多少。。

样例 1

输入:

3 2
1 1 2
1 1 2
2 2 5

输出:

5


相关知识点:贪心二分查找二维前缀和


题解


首先要充分理解题目所说 “最重的一块蛋糕最轻的重量是多少” 的含义。对一个蛋糕按其固有分块线进行切割,势必会得到若干子块,在这些子块中肯定有一个重量最大的。例如,对如下蛋糕采取图示切割方案时,得到四个子块中重量最大的为 7:

在这里插入图片描述

但是,我们发现还存在一种切割方式能降低最重子块的重量:

在这里插入图片描述

还有没有能继续降低最重子块重量的切割方案呢?对本题而言,这是最终解,于是输出 5。

基于此可知,最简单的做法就是枚举全部的切割方案,并算出各方案下的最重子块,然后取这些最重质量中的最小值即可。但是,极限情况下,最多的切割方案高达 C 14 2 28 = C 196 28 C_{{14}^2}^{28}=C_{196}^{28} C14228=C19628 种,必定超时。因此我们不能直接对切割方案进行线性枚举。这时候通常要想到二分法,但此时二分的目标将变为“最重子块的重量”。即寻找一个重量,使得不存在任何切割方案能切出比该重量更低的子块蛋糕。从题目给出的数据可知,极限情况下最大的重量为 1000 × 15 × 15 1000\times15\times15 1000×15×15(即,整个蛋糕各子块均为最大重量 1000,且一刀不切)。这在 log ⁡ 2 x \log_2{x} log2x 级下,将不会超过 17 次枚举。这样一来,我们就将原任务转换为“给定一个重量,问是否存在一种切割方式使得其切出的各子块都不大于该值”。而该过程最多进行 17 次。

现在我们思考,如何判断某个重量是否存在一种满足以上要求的切割方案。这还是涉及到对蛋糕进行切割的问题。但是我们现在不需要求“指定切割次数下的各切割方案”,而是找一种满足要求的解。这是一个证存在的问题,因此我们可采取贪心的思路进行求解。

整体的切割思路如下:

  1. 按行枚举切割方案;
  2. 对每一个按行切割的方案按列进行切割,并统计切割得到的子块重量。在切割满足要求的情况下(即总的切割次数不能超过 K K K),算出切割出的各子块重量。若存在被切割出的子块重量超过二分法给定的重量限制,则说明当前切割方法是不成立的,于是跳过此列切割并继续查找(这一操作类似剪枝的作用,直接否定了一类切割方案,大大降低枚举次数)。若能从某一次列切割中顺利遍历全部列(即表示找到了一个切割方案使得其切出的所有子块重量均小于二分法给定的重量限制),则直接返回真。
  3. 枚举结束,说明没有找到任何切割方法能使最重的一块蛋糕最轻的重量小于给定值,则返回假。

下面介绍如何按行枚举切割方案。注意到一件事,对于一个长度为 n n n 的格子,其形成的空隙数量为 n − 1 n-1 n1 ,这就是说有 n − 1 n-1 n1 个位置可进行切割。对每个位置有切与不切两种选择,因此由这 n − 1 n-1 n1 个位置可产生的切割方案共有 2 n − 1 2^{n-1} 2n1 种。实际上,这 2 n − 1 2^{n-1} 2n1 种不同的切割方案正好可用其对应的二进制位来表达,如下图所示。而由十进制数转换为二进制数的过程正好可用于记录该数对应的切割方案。需要注意的是,在枚举按行切割的方案数时,一旦某种方案的切割次数超过了给定的切割次数 K K K 时,就需要直接跳过此切割方案(这也相当于是进行剪枝)。

在这里插入图片描述

有了具体的横向切割方案,接下来便能根据贪心的思想来寻找满足“使切出的子块均不大于给定重量”这一要求的切割方案,具体的流程如下:

  1. 遍历全部列(尝试在纵向进行划分,包括了不对列进行切割的情况);
  2. 对每一列,从上到下计算其在当前横向切割方案下的产生的全部子块重量(这一步涉及到求矩阵元素和的操作)。由于我们要使“最重的一块蛋糕最轻”,因此我们在这一步求解时,需要在满足重量不大于给定值的前提下尽可能重(即贪心)。在这样的前提下,我们动态向右累加子块重量,一旦某次添加的列(单列块)使得该子块重量已经超过给定重量,则表示必须在此列前的位置切割,否则那样的切割方案必定不满足要求。另外,若“单列块”本身的重量超过了给定重量,则基于目前行切割方案进行的任何切割都不可能得到满足条件的切割方式,这种情况下可直接跳过目前的行切割方案(为此,需要单独设计一个标记变量)。

在这里插入图片描述

在上述枚举过程中,涉及到一个求二维矩阵中子阵元素之和的过程(即计算子块的重量)。显然,我们不可能每次都单独算子阵元素和。于是,这就需要用二维前缀和数组。有关二维前缀和的构建和求和在前面已经讲过,在此就不过多赘述(二位前缀和数组传送门)。

本题是一道综合性非常强的例题,涉及到二分法查找、贪心、二维前缀和等相关知识,是一道非常值得练习的题目!

下面直接给出基于以上思路得到的求解本题的完整代码:

/*
    BD202302 蛋糕划分 
    贪心、二分查找、二维前缀和 
*/
#include<bits/stdc++.h> 
using namespace std; 

const int N = 20;
int n, K, maxQuality;
int ary[N][N], prefixAry[N][N];

// 根据二维前缀和数组计算子块和
int getPrefixSum(int max_x,int max_y,int min_x,int min_y)
{
    return prefixAry[max_x][max_y] - prefixAry[min_x-1][max_y] - prefixAry[max_x][min_y-1] + prefixAry[min_x-1][min_y-1];
}

// 判断在 K 刀之内是否存在一种切割方案使得所有蛋糕的质量都小于 quality
bool check(int quality)
{
    // 如果最重的子块比 quality 大,则不可能存在切割方案使各块小于 quality
    if(maxQuality > quality) return false;
    // 纵向切割方案对应的二进制表达形式容器
    int col[N] = {0};
    // 横向切割时,对应子块的累计元素和,以及该位置的元素值
    int sum_col[N], cur_col[N];
    // 枚举横向切割的方案(n 个块之间有 n-1 个切割位置,对应就有 2^(n-1) 种切割方式)
    int limit = 1 << (n-1), tmp, pos, cutCnt;
    for(int i=0; i<limit; i++){
        // 切割点容器
        vector<int> v;
        tmp = i;
        // 记录切割位置
        pos = 0;
        // 记录切割次数
        cutCnt = 0;
        // 取出十进制数 i 对应的二进制编码中所表示的切割方案
        while(tmp){
            pos ++;
            if(tmp & 1){
                v.push_back(pos);
                cutCnt++;
            }
            tmp /= 2;
        }
        // 如果该切割方案的切割次数超过了 K 则跳过
        if(cutCnt > K) continue;
        v.push_back(n);
        
        // 不合适的横向切割标记,用于提前跳出一些始终不满足要求的横向切割方案 
    	int fail = 0;
        // 初始化
        memset(col, 0, sizeof(col));
        memset(cur_col,0,sizeof(cur_col));
        memset(sum_col,0,sizeof(sum_col));
        int top;
        // 按列枚举被横向切割的蛋糕质量,如果超过了 quality 就必须进行切割
        for(int j=1; j<=n; j++){
            // 当前块的最小行下标
            top = 1;
            // 对于第 j 列,从上到下枚举计算其产生的子块
            for(int k=0; k<v.size(); k++){
                // 当前块的最大行下标
                int down = v[k];
                // 当前宽度为 1 的块的重量
                int now = getPrefixSum(down,j,top,j);
                // 若切割得到子块的质量位超过 quality 就需要重新切割
                if(now > quality){
                    fail = 1;
                    break;
                }
                // 否则就继续沿横向累加
                sum_col[k] += now;
                // 缓存当前列的数据,防止被切以形成新块
                cur_col[k] = now;
                // 若前一列为切割点,则说明当前列的上层块已经满足切割条件,则重新开启新列计数 
                if(col[j-1])
                    sum_col[k] = now;
                // 第 j 块 i 列累加超过了 quality,说明当前列不能被累加,因此需进行切割
                if(sum_col[k] > quality)
                {
                    // 记录竖切位置
                    col[j-1] = 1;
                    sum_col[k] = now;
                    // 更新 k 横块以上的第 j 列的重量,不再累加前面的
                    for(int p=0; p<k; p++)
                        sum_col[p] = cur_col[p];
                }
                // 更新最小行的行号
                top = down+1;    
            }
            if(fail == 1) break;
        }
        if(fail == 1) continue;
        // 遍历完整个列切割过程,累加列切割次数 
        for(int p=1; p<n; p++)
			if(col[p]) cutCnt++;
		// 若总切割次数不大于 K 则说明找到一个满足要求的切割方案 
        if(cutCnt <= K) return true;
    }
    // 不存在任何切割方案满足要求 
    return false;
}

int main()
{
    // 获取输入
    cin>>n>>K;
    for(int i=1; i<=n; i++)
    	for(int j=1; j<=n; j++){
    		cin>>ary[i][j];
    		maxQuality = max(maxQuality, ary[i][j]);
    		// 构建二维前缀和数组
    		prefixAry[i][j] = ary[i][j] + prefixAry[i-1][j] + prefixAry[i][j-1] - prefixAry[i-1][j-1];
		}
	// 二分查找一个质量,使得该质量是划分能得到的最小值
	int l = 0, r = 1000*15*15, m;
	while(l <= r){
	    m = (l+r) >> 1;
	    // 若存在一种切法使所有块都小于 m,说明还存在更小切块的方案
	    if(check(m)) r = m-1;
	    // 否则说明当前切法是在保证质量尽可能大的情况下的最小切割方案
	    else l = m+1;
	}
	// 输出结果
	cout<<l<<endl;
	return 0;
}


BD202303 第五维度⭐⭐

难度:星耀    时间限制:1秒    占用内存:64M
题目描述

零维是点,点动成线;
一维是线,线动成面;
二维是面,面动成体;
三维是体,体动成史;
四维是史,史动???
现在人类企图理解第五维度。
小度是第五维度的一位智者。一天,小度发现人类的许多科学家在试图理解第五维度,人类是四维生物,若是他们理解了第五维度,很可能也会到来第五维度的空间,这显然是小度不愿意看到的(毕竟哪里都有人口数量的问题….)所以小度希望他们尽可能晚的理解第五维度,因此,小度用更高维度的视角把所有人类中在理解第五维的科学家都看到了,而这些科学家的智商会不一样,所以他们的理解速度 V i V_i Vi 也会不一样;并且,他们开始理解的时间点 S i S_i Si 也不一样。理解速度 V i V_i Vi 描述为每过单位时间可获得 V i V_i Vi 个单位理解力,也就是说在 S i + 1 S_i+1 Si+1 的时间点该科学家会第一次贡献 V i V_i Vi 的理解力。我们定义理解力总数超过 m m m 时理解了第五维度。 小度因为维度更高,可以使用时间悖论来给人类一次重大的打击,小度可以让任意一位科学家在任意一个时间点消失,所以他接下来的理解不会继续;而且人类不会记得他,所以他之前的贡献会消失。因为小度能力有限,所以小度只能使用一次暂时悖论。

现在求在尽可能晚的情况下,人类理解第五维度的最早时间点。时间点初始为 0,但显然,没有科学家能够在 0 时刻有贡献。

格式

输入格式:第一行给出一个整数 n n n 和一个整数 m m m,表示有 n n n 个科学家,在理解力总数超过 m m m 时理解了第五维度;
     第二行至第 n + 1 n+1 n+1 行:每行两个整数 S i S_i Si V i V_i Vi
     对于 100% 的数据: 1 ≤ n ≤ 10 5 , m ≤ 2 × 10 9 , 0 ≤ S i ≤ 2 × 10 9 , 0 ≤ V i ≤ 10 3 1\le n\le{10}^5,m\le2\times{10}^9,0\le S_i\le2\times{10}^9,0\le V_i\le{10}^3 1n105m2×1090Si2×1090Vi103
输出格式:一行,包含一个整数 T T T 表示在尽可能晚的情况下,人类理解第五维度的最早时间点。若人类永远无法理解第五维度,则输出 -1

样例 1

输入:
3 10
0 1
4 6
5 1

输出:

8

样例 2

输入:
3 10
0 0
4 0
5 1

输出:

-1


备注

对于第一个样例,使得   S i = 4 , V i = 6 {\ S}_i=4,V_i=6  Si=4Vi=6 的科学家消失,则每个时刻总共理解力为:0 1 2 3 4 5 7 9 11,在时刻 8 超过 m = 10 m=10 m=10,因此输出 8;对于第二个样例,人类永远无法理解第五维度,因此输出 -1


相关知识点:贪心


题解


首先对本题的意思进行一个简化:输入 n n n 个科学家开始理解第五维度的时间点   S i {\ S}_i  Si 以及其单位时间能得到的理解力 V i V_i Vi (均为非负整数),那么随着时间的推移,全部科学家的总理解力肯定是不断增加的。一旦总理解力达到了 m m m ,则认为人类能理解第五维度。但是,现在有一个具有上帝视角的人,他总能找到在这些科学家中具有最高理解力的那位并将其从抹除(则他的理解力也将消失),那么这时候人类还能理解第五维度么?如果能,则输出在这样的前提下人类理解第五维度的最早时间;否则输出 -1。

本题中, m m m 的最大取值为 2 × 10 9 2\times{10}^9 2×109 ,那么在极限情况下(只有一个科学家且   S i = 0 ,   V i = 1 {\ S}_i=0,\ V_i=1  Si=0, Vi=1)的最长时间也是 2 × 10 9 2\times{10}^9 2×109 。可以看出,如果直接枚举时间线算出人类的总理解力,并在抹除具有最高理解力的人后判断与 m m m 的大小关系是极易超时的。在这种情况下,一定要敏锐地想到二分法查找。

对于每一次查找的时间 T T T,可采取下式求解全部人类的总理解力:

for(int i=0; i<n; i++){
        if(T > S[i]){
            // 累加
            sum_comp += ((long long)T - S[i]) * V[i];
        }
}

注意,题目要求在尽可能晚的情况下,人类理解第五维度的最早时间点。而尽可能晚,就意味着每次都要抹除此刻对人类理解力共享最大的科学家。为此,我们可以在求全部人类总理解力的同时,记录其中的最大理解力,并在最后减去该值即可,于是有:

// 判断在指定时间下,人类能否理解第五维度
bool check(int T)
{
    // 在指定时间下人类的理解力总和、这些理解力中的最大值 
    long long sum_comp = 0, max_comp = 0, tmp;
    // 计算所有人的理解力总和,并找到其中的最大值
    for(int i=0; i<n; i++){
        if(T > S[i]){
            // 计算当前第 i 个人的获取的理解力 
            tmp = ((long long)T - S[i]) * V[i];
            // 累加
            sum_comp += tmp;
            // 找出具有最大贡献的理解力 
            max_comp = max(max_comp, tmp);
        }
    }
    // 要求尽可能晚的情况下,那就把具有最大共享的理解力去除即可 
    return (sum_comp - max_comp > m);
}

下面给出基于以上思路得到的求解本题的完整代码:

/*
    BD202303 第五维度 
    贪心、二分法
*/ 

#include<bits/stdc++.h> 
using namespace std;

const int N = 1e5+5;
// 各科学家的理解力起始数组、单位时间增长数组 
int S[N], V[N];
// 科学家数量和需要理解五维空间的总理解力
int n, m; 

// 判断在指定时间下,人类能否理解第五维度
bool check(int T)
{
    // 在指定时间下人类的理解力总和、这些理解力中的最大值 
    long long sum_comp = 0, max_comp = 0, tmp;
    // 计算所有人的理解力总和,并找到其中的最大值
    for(int i=0; i<n; i++){
        if(T > S[i]){
            // 计算当前第 i 个人的获取的理解力 
            tmp = ((long long)T - S[i]) * V[i];
            // 累加
            sum_comp += tmp;
            // 找出具有最大贡献的理解力 
            max_comp = max(max_comp, tmp);
        }
    }
    // 要求尽可能晚的情况下,那就把具有最大共享的理解力去除即可 
    return (sum_comp - max_comp > m);
}

// 二分查找使科学家能理解的最早时间 
int BinarySearch()
{
    // 能理解的极限情况下,只有 1 个科学家,理解力最小为 1,则最长的时间为 2e9
    long long l = 1, r = 2e9;
    int ans = -1;
    // 二分查找 
    while(l < r){
        int mid = l+r >> 1;
        // 判断该时间下(尽可能晚),人类能否理解第五维度
        if(check(mid)){
            r = mid;
            ans = mid; 
        }else{
            l = mid + 1;
        } 
    }
    return ans;
}

int main( )
{
    // 录入数据 
    cin>>n>>m;
    for(int i=0; i<n; i++)
        cin>>S[i]>>V[i];
    // 输出使科学家能理解的最早时间
    cout<<BinarySearch()<<endl;
    return 0;
}

END


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1171860.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用Gorm进行高级查询

深入探讨GORM的高级查询功能&#xff0c;轻松实现Go中的数据检索 高效的数据检索是每个应用程序性能的核心。GORM&#xff0c;强大的Go对象关系映射库&#xff0c;不仅扩展到基本的CRUD操作&#xff0c;还提供了高级的查询功能。本文是您掌握使用GORM进行高级查询的综合指南。…

计算虚拟化3——I/O设备虚拟化

目录 I/O基本概念 I/O设备与CPU连接图 CPU与I/O设备的交互 访问I/O设备&#xff08;IO Access&#xff09; 数据传输&#xff08;Data Tronhsfer&#xff09; I/O设备虚拟化技术 软件辅助全虚拟化 半虚拟化 Virtio协议基本概念 Virtqueue讲解 硬件辅助全虚拟化 I/O…

美国航空公司飞行员工会遭受勒索软件攻击

导语&#xff1a;近日&#xff0c;美国航空公司的飞行员工会遭受了一次勒索软件攻击。这次攻击对于全球最大的独立飞行员工会——美国航空公司飞行员协会&#xff08;APA&#xff09;造成了一定影响。让我们一起来了解详情。 背景介绍 美国航空公司飞行员协会成立于1963年&…

Bytedance揭秘OpenAI大模型: GPT-3到GPT-4进化路径

文章目录 探秘GPT-3到GPT-4进化之路1、SFT&#xff1a;早期GPT进化的推动者2、RLHF和SFT&#xff1a;编码能力提升的功臣3、代码加入预训练&#xff0c;对推理帮助最大4、“跷跷板”现象 论文地址项目链接Reference GPT-Fathom: Benchmarking Large Language Models to Deciphe…

Python入门:6个好用的Python代码,快来收藏!

文章目录 1.类有两个方法&#xff0c;一个是 new,一个是 init,有什么区别&#xff0c;哪个会先执行呢&#xff1f;2.map 函数返回的对象3.正则表达式中 compile 是否多此一举&#xff1f;4.[[1,2],[3,4],[5,6]]一行代码展开该列表&#xff0c;得出[1,2,3,4,5,6]5.一行代码将字符…

物理内存的关系及分配模式

在分配缓存块的时候&#xff0c;要分两种路径&#xff0c;fast path 和 slow path&#xff0c;也就是快速通道和普通通道。其中 kmem_cache_cpu 就是快速通道&#xff0c;kmem_cache_node 是普通通道。每次分配的时候&#xff0c;要先从 kmem_cache_cpu 进行分配。如果 kmem_ca…

shell脚本代码混淆

文章目录 起因安装 Bashfuscator安装BashfuscatorBashfuscator的使用 起因 很多时候我并不希望自己的shell脚本被别人看到&#xff0c;于是我在想有没有什么玩意可以把代码加密而又正常执行&#xff0c;于是我想到了代码混淆&#xff0c;简单来看一下&#xff1a; 现在我的目…

WSL 下载

可以使用单个命令安装运行 WSL 所需的一切内容。 在管理员模式下打开 PowerShell 或 Windows 命令提示符&#xff0c;方法是右键单击并选择“以管理员身份运行”&#xff0c;输入 wsl --install 命令&#xff0c;然后重启计算机。 首先查看可以下载的版本 最后再运行wsl --ins…

新手入门Python一定要看的八个超实用建议!

文章目录 前言一、项目文件事先做好归档二、永远不要手动修改源数据并且做好备份三、做好路径的正确配置四、代码必要的地方做好备注与说明五、加速你的Python循环代码六、可视化你的循环代码进度七、使用高效的异常捕获工具八、要多考虑代码健壮性关于Python技术储备一、Pytho…

代理模式(静态代理、JDK代理、CGLIB代理)

简介 代理模式有三种不同的形式&#xff1a;静态代理、动态代理&#xff08;JDK代理、接口代理&#xff09;、CGLIB代理 目标&#xff1a;在不修改目标对象的前提下&#xff0c;对目标对象进行扩展。 静态代理 需要定义接口或父类对象&#xff0c;被代理对象和代理对象通过实…

Go 方法介绍,理解“方法”的本质

Go 方法介绍&#xff0c;理解“方法”的本质 文章目录 Go 方法介绍&#xff0c;理解“方法”的本质一、认识 Go 方法1.1 基本介绍1.2 声明1.2.1 引入1.2.2 一般声明形式1.2.3 receiver 参数作用域1.2.4 receiver 参数的基类型约束1.2.5 方法声明的位置约束1.2.6 如何使用方法 二…

uniapp: 前端利用百度云OCR实现文字识别(身份证识别功能,别的功能类似)

第一章 前言 介绍如何使用百度智能云实现我们想要的效果&#xff0c;需要在下面这个网址注册账号&#xff1a; 百度智能云-云智一体深入产业 使用文档在该网址上&#xff1a; 简介 - 文字识别OCR 请求成功的效果&#xff0c;如下图&#xff1a; 搜索产品&#xff08;例如文字…

数据结构--前缀树(Trie)

1. 简介 前缀树是一种数据结构&#xff0c;常用来字符搜索。 2. 实现 包含的操作主要是: 加入串搜索串 代码实现&#xff0c;直接用leetcode_208的题解咯。 代码 class Trie { public:Trie():isEnd(false){for ( int i 0; i < 26;i)child[i] nullptr;}~Trie() {fo…

零基础搭建Nextcloud私有云盘并通过内网穿透实现远程访问

文章目录 摘要1. 环境搭建2. 测试局域网访问3. 内网穿透3.1 ubuntu本地安装cpolar3.2 创建隧道3.3 测试公网访问 4 配置固定http公网地址4.1 保留一个二级子域名4.1 配置固定二级子域名4.3 测试访问公网固定二级子域名 摘要 Nextcloud,它是ownCloud的一个分支,是一个文件共享服…

Vue 条件渲染 与 列表渲染

目录 一、条件渲染 1.简介 : 2.v-if实例 : 3.v-show实例 : 4.v-if与v-show的区别 : 二、列表渲染 1.基本用法 : 1.1 v-for遍历数组 1.2 v-for遍历对象 2.应用实例 : 一、条件渲染 1.简介 : (1) Vue提供了v-if 和 v-show条件指令来完成条件渲染/控制。 v-if指令用于条…

​C++内存模型

c语言分区:栈、堆、全局/静态存储区、常量存储区、代码区(.text段)、自由存储区 1、栈区&#xff08;stack&#xff09;— 由编译器自动分配释放&#xff0c;存放函数的参数值&#xff0c;局部变量的值等。其操作方式类似于数据结构中的栈。向下生长 2、堆区&#xff08;heap&…

iSlide2024一款基于PPT的插件工具包含38个设计辅助功能

根据使用者情况表明iSlide 是一款拥有30W素材的PPT高效设计软件&#xff0c;可提高90%工作效率&#xff0c;现全球已有超过1400万使用者&#xff0c;智能排版原创高品模板可商用图形&#xff0c;真正摆脱PPT的束缚&#xff0c;把精力用在该用的地方。我们都明白islide插件功能特…

Linux背景介绍与环境搭建

本章内容 认识 Linux, 了解 Linux 的相关背景学会如何使用云服务器掌握使用远程终端工具 xshell 登陆 Linux 服务器 Linux 背景介绍 发展史 本门课程学习Linux系统编程&#xff0c;你可能要问Linux从哪里来&#xff1f;它是怎么发展的&#xff1f;在这里简要介绍Linux的发展…

pytorch 中 nn.Conv2d 解释

1. pytorch nn.Con2d 中填充模式 torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride1, padding0, dilation1, groups1, biasTrue, padding_mode‘zeros’, deviceNone, dtypeNone) 1.1 padding 参数的含义 首先 &#xff0c;padd N, 代表的是 分别在 上下&…

阿里云安全恶意程序检测

阿里云安全恶意程序检测 赛题理解赛题介绍赛题说明数据说明评测指标 赛题分析数据特征解题思路 数据探索数据特征类型数据分布箱型图 变量取值分布缺失值异常值分析训练集的tid特征标签分布测试集数据探索同上 数据集联合分析file_id分析API分析 特征工程与基线模型构造特征与特…