竞赛选题 深度学习实现语义分割算法系统 - 机器视觉

news2025/1/8 0:47:59

文章目录

  • 1 前言
  • 2 概念介绍
    • 2.1 什么是图像语义分割
  • 3 条件随机场的深度学习模型
    • 3\. 1 多尺度特征融合
  • 4 语义分割开发过程
    • 4.1 建立
    • 4.2 下载CamVid数据集
    • 4.3 加载CamVid图像
    • 4.4 加载CamVid像素标签图像
  • 5 PyTorch 实现语义分割
    • 5.1 数据集准备
    • 5.2 训练基准模型
    • 5.3 损失函数
    • 5.4 归一化层
    • 5.5 数据增强
    • 5.6 实现效果
  • 6 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习实现语义分割算法系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 概念介绍

2.1 什么是图像语义分割

这几年,随着深度学习理论和大规模并行计算设备快速发展,计算机视觉的诸多难点实现了质的突破,包括图像分类叫、目标检测、语义分割等等。

其中图像分类和目标检测在各种场景应用中大放光彩。目前最先进网络的准确度已经超过人类。

而图像语义分割是一.种语义信息更丰富的视觉识别任务,其主要任务是实现像素级别的分类。

图像语义分割示意图如下图所示。

图像语义分割技术在实际中有着非常广泛的应用,如自动驾驶、生物医学以及现实增强技术等等。

在这里插入图片描述

语义分割在自动驾驶的应用:

在这里插入图片描述
在这里插入图片描述

3 条件随机场的深度学习模型

整个深度学习模型框架下如图:
在这里插入图片描述

3. 1 多尺度特征融合

图像中的各类物体都以不同的形态出现, 用来观测它们的尺度也不尽相同, 不同的物体需要用合适的尺度来测量。

尺度也有很多种, 宏观上大的如“米”、“千米” 甚至“光年”; 微观上小的如“微米”、“纳米” 甚至是“飞米”。 在日常生活中,
人们也经常接触到尺度上的变换, 例如人们经常用到的电子地图上的放大与缩小、 照相机焦距的变化等,都是以不同的尺度来观察或者测量不同的物体。

当人们将一幅图像输入到计算机中时, 计算机要尝试很多不同的尺度以便得到描述图片中不同物体的最合适的尺度。

卷积神经网络中含有大量的超参数, 而且在网络中的任何一个参数, 都会对网络生成的特征映射产生影响。 当卷积神经网络的结构已经确定下来时,
网络中每一层学习到的特征映射的尺度也随之固定了下来, 拥有了在一定程度上的尺度不变性。

与此同时, 为了完成当前的任务, 网络中的这些已经设置好的超参数不能被随意更改, 所以必须要考虑融合多尺度特征的神经网络。

这种神经网络可以学习学长提供的框架不同尺度的图像特征, 获得不同尺度的预测, 进而将它们融合, 获得最后的输出。

一种多尺度特征融合网络如下所示。

在这里插入图片描述

4 语义分割开发过程

学长在这详细说明图像语义分割,如何进行开发和设计

语义分割网络对图像中的每个像素进行分类,从而产生按类别分割的图像。语义分割的应用包括用于自主驾驶的道路分割和用于医学诊断的癌细胞分割。有关详细信息,请参阅语义分段基础知识(计算机视觉系统工具箱)。

为了说明训练过程,学长训练SegNet ,一种设计用于语义图像分割的卷积神经网络(CNN)。用于语义分段的其他类型网络包括完全卷积网络(FCN)和U-
Net。此处显示的培训程序也可以应用于这些网络。

此示例使用剑桥大学的CamVid数据集进行培训。此数据集是包含驾驶时获得的街道视图的图像集合。该数据集为32种语义类提供了像素级标签,包括汽车,行人和道路。

4.1 建立

此示例创建具有从VGG-16网络初始化的权重的SegNet网络。要获得VGG-16,请安装适用于VGG-16网络的Deep Learning
Toolbox™模型。安装完成后,运行以下代码以验证安装是否正确。

vgg16();
下载预训练版的SegNet。预训练模型允许您运行整个示例,而无需等待培训完成。

pretrainedURL = 'https: //www.mathworks.com/supportfiles/vision/data/segnetVGG16CamVid.mat ' ;
pretrainedFolder = fullfile(tempdir,'pretrainedSegNet';
pretrainedSegNet = fullfile(pretrainedFolder,'segnetVGG16CamVid.mat'; 
如果〜存在(pretrainedFolder,'dir')
    MKDIR(pretrainedFolder);
    disp('下载预训练的SegNet(107 MB)......';
    websave(pretrainedSegNet,pretrainedURL);
结束

强烈建议使用具有计算能力3.0或更高版本的支持CUDA的NVIDIA™GPU来运行此示例。使用GPU需要Parallel Computing
Toolbox™。

4.2 下载CamVid数据集

从以下URL下载CamVid数据集。

imageURL = 'http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/files/701_StillsRaw_full.zip;  
labelURL = 'http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/data/LabeledApproved_full.zip;

outputFolder = fullfile(tempdir,‘CamVid’);

如果〜存在(outputFolder,‘dir’)

MKDIR(outputFolder)
labelsZip = fullfile(outputFolder,'labels.zip';
imagesZip = fullfile(outputFolder,'images.zip';   

disp('下载16 MB CamVid数据集标签......';
websave(labelsZip,labelURL);
unzip(labelsZip,fullfile(outputFolder,'labels'));

disp('下载557 MB CamVid数据集图像......';  
websave(imagesZip,imageURL);       
解压缩(imagesZip,fullfile(outputFolder,'images'));    


注意:数据的下载时间取决于您的Internet连接。上面使用的命令会阻止MATLAB,直到下载完成。或者,您可以使用Web浏览器首先将数据集下载到本地磁盘。要使用从Web下载的文件,请将outputFolder上面的变量更改为下载文件的位置。

4.3 加载CamVid图像

使用imageDatastore加载CamVid图像。在imageDatastore使您能够高效地装载大量收集图像的磁盘上。

imgDir = fullfile(outputFolder,'images''701_StillsRaw_full';
imds = imageDatastore(imgDir);
显示其中一个图像。

在这里插入图片描述

4.4 加载CamVid像素标签图像

使用pixelLabelDatastore加载CamVid像素标签图像数据。A
pixelLabelDatastore将像素标签数据和标签ID封装到类名映射中。

按照原始SegNet论文[1]中使用的程序,将CamVid中的32个原始类分组为11个类。指定这些类。

class = [
     “Sky” 
    “Building” 
    “Pole” 
    “Road” 
    “Pavement” 
    “Tree” 
    “SignSymbol” 
    “Fence” 
    “Car” 
    “Pedestrian” 
    “Bicyclist” 
    ];

要将32个类减少为11个,将原始数据集中的多个类组合在一起。例如,“Car”是“Car”,“SUVPickupTruck”,“Truck_Bus”,“Train”和“OtherMoving”的组合。使用支持函数返回分组的标签ID,该函数camvidPixelLabelIDs在本示例的末尾列出。

abelIDs = camvidPixelLabelIDs();
使用类和标签ID来创建 pixelLabelDatastore.

labelDir = fullfile(outputFolder,'labels';
pxds = pixelLabelDatastore(labelDir,classes,labelIDs);
通过将其叠加在图像上来读取并显示其中一个像素标记的图像。

C = readimage(pxds,1;

cmap = camvidColorMap;

B = labeloverlay(I,C,'ColorMap',cmap);
imshow(B)
pixelLabelColorbar(CMAP,班);

在这里插入图片描述

5 PyTorch 实现语义分割

学长这里给出一个具体实例 :

使用2020年ECCV Vipriors Chalange Start Code实现语义分割,并且做了一些优化,让进度更高

5.1 数据集准备

使用Cityscapes的数据集MiniCity Dataset。

在这里插入图片描述

将各基准类别进行输入:

在这里插入图片描述

从0-18计数,对各类别进行像素标记:

在这里插入图片描述

使用deeplab v3进行基线测试,结果发现次要类别的IoU特别低,这样会导致难以跟背景进行区分。

如下图中所示的墙、栅栏、公共汽车、火车等。

在这里插入图片描述

注意: 以上的结果表述数据集存在严重的类别不平衡问题。

5.2 训练基准模型

使用来自torchvision的DeepLabV3进行训练。

硬件为4个RTX 2080 Ti GPU (11GB x 4),如果只有1个GPU或较小的GPU内存,请使用较小的批处理大小(< = 8)。

python baseline.py --save_path baseline_run_deeplabv3_resnet50 --crop_size 576 1152 --batch_size 8;  
python baseline.py --save_path baseline_run_deeplabv3_resnet101 --model DeepLabv3_resnet101 --train_size 512 1024 --test_size 512 1024 --crop_size 384 768 --batch_size 8; 

5.3 损失函数

有3种损失函数可供选择,分别是:交叉熵损失函数(Cross-Entropy Loss)、类别加权交叉熵损失函数(Class-Weighted Cross
Entropy Loss)和焦点损失函数(Focal Loss)。

交叉熵损失函数,常用在大多数语义分割场景,但它有一个明显的缺点,那就是对于只用分割前景和背景的时候,当前景像素的数量远远小于背景像素的数量时,模型严重偏向背景,导致效果不好。

# Cross Entropy Loss  
python baseline.py --save_path baseline_run_deeplabv3_resnet50 --crop_size 576 1152 --batch_size 8; 

类别加权交叉熵损失函数是在交叉熵损失函数的基础上为每一个类别添加了一个权重参数,使其在样本数量不均衡的情况下可以获得更好的效果。

# Weighted Cross Entropy Loss  
python baseline.py --save_path baseline_run_deeplabv3_resnet50_wce --crop_size 576 1152 --batch_size 8 --loss weighted_ce; 

焦点损失函数则更进一步,用来解决难易样本数量不平衡。

# Focal Loss  
python baseline.py --save_path baseline_run_deeplabv3_resnet50_focal --crop_size 576 1152 --batch_size 8 --loss focal --focal_gamma 2.0; 

5.4 归一化层

在这里插入图片描述

BN是在batch上,对N、H、W做归一化,而保留通道 C 的维度。BN对较小的batch size效果不好。

5.5 数据增强

2种数据增强技术

  • CutMix
  • Copy Blob

在 Blob 存储的基础上构建,并通过Copy的方式增强了性能。

在这里插入图片描述

另外,如果要解决前面所提到的类别不平衡问题,则可以使用视觉归纳优先的CopyBlob进行增强。

# CopyBlob Augmentation  
python baseline.py --save_path baseline_run_deeplabv3_resnet50_copyblob --crop_size 576 1152 --batch_size 8 --copyblob; 

5.6 实现效果

多尺度推断

使用[0.5,0.75,1.0,1.25,1.5,1.75,2.0,2.2]进行多尺度推理。另外,使用H-Flip,同时必须使用单一批次。

# Multi-Scale Inference  
python baseline.py --save_path baseline_run_deeplabv3_resnet50 --batch_size 1 --predict --mst; 

使用验证集计算度量

计算指标并将结果保存到results.txt中。

python evaluate.py --results baseline_run_deeplabv3_resnet50/results_val --batch_size 1 --predict --mst; 

训练结果
在这里插入图片描述

最后的单一模型结果是0.6069831962012341,

如果使用了更大的模型或者更大的网络结构,性能可能会有所提高。

另外,如果使用了各种集成模型,性能也会有所提高。

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1171087.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

整理的一些Java细节问题

1. 为什么要有无参构造&#xff1f; 在 Java 中&#xff0c;如果一个类没有显式定义构造方法&#xff0c;编译器会自动生成一个默认的无参构造方法&#xff08;也称为默认构造方法&#xff09;。无参构造方法是一个没有任何参数的构造方法。 无参构造方法的存在有几个重要原因…

【vscode输出中文乱码】

vscode输出中文乱码为一个个的问号。 这个链接亲测有用 win11对应的界面在这里&#xff1a;

产品经理入门学习(二):产品经理问题思考维度

参考引用 黑马-产品经理入门基础课程 1. 抓住核心用户 1.1 为什么要抓住核心用户 什么是用户&#xff1f; 所有和产品有关系的群体就是用户&#xff0c;他们是一群既有共性&#xff0c;又有差异的群体组合 做产品为什么要了解用户&#xff1f; 了解用户的付费点、更好的优化产…

文件同步工具推荐:挑选高效实用的工具大揭秘

随着工作的累积&#xff0c;会持续产出大量电子资料和文件。如何妥善管理这些文件资料&#xff0c;成了一个问题。有需求就有市场&#xff0c;当下市场上也有很多文件同步工具。 有什么好用的文件同步工具&#xff1f; Zoho WorkDrive 同步网盘就是一款好用的文件同步工具&am…

Leetcode—199.二叉树的右视图【中等】

2023每日刷题&#xff08;十九&#xff09; Leetcode—199.二叉树的右视图 深度优先遍历实现代码 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(…

【数据结构】冒泡排序

冒泡排序 前言冒泡排序运行图例算法实现基本思路算法实现步骤算法码源详解冒泡排序效率分析&#xff08;一&#xff09;时间复杂度——O&#xff08;N^2&#xff09;&#xff08;二&#xff09;空间复杂度——O&#xff08;1&#xff09;&#xff08;三&#xff09;稳定性&…

人工智能基础_机器学习018_手写代码实现_MBGD小批量梯度下降---人工智能工作笔记0058

然后我们继续来看这里的小批量梯度下降,小批量梯度下降,其实就是 用少量的样本数据,进行梯度下降,上面是公式 然后我们来看代码 import numpy as np 导入数学计算包 #X,y创建数据集X=np.random.rand(100,1) x是100行1列 w,b=np.random.randint(1,10,size=2) 然后获取w和截距…

干货分享:10个行业可视化大屏模板(附 Python 源码)

大家好&#xff0c;数据大屏是一种用于展示和分析数据的可视化工具&#xff0c;通常用于监控、分析和报告数据。大屏可以帮助组织更好地理解和管理其数据&#xff0c;支持数据驱动决策&#xff0c;提高业务效率和决策的质量。 本文的所有大屏都是基于Python开发&#xff0c;因…

根据一个类型 获取该类型的 特殊判断 优雅写法

需求&#xff1a;一个统计接口&#xff0c;时间类型参数有以下&#xff1a;今日、近七天、近三十日等 如果我要查询的话&#xff0c;SQL 里的条件必定是一个时间范围&#xff0c;所以就需要根据类型来算好这个时间范围&#xff0c;所以可以写成下面这样。 到时候直接就是 获取…

前端vue,后端springboot。如何防止未登录的用户直接浏览器输入地址访问

前端&#xff0c;使用Vue框架来实现前端路由拦截&#xff1a; 设置需要登录校验的页面&#xff1a; 登录成功后&#xff0c;去设置LocalStorage里面的IsLogin为true:

[LeetCode]-链表中倒数第k个结点-CM11 链表分割-LCR 027. 回文链表

目录 链表中倒数第k个结点 题目 思路 代码 CM11 链表分割 题目 思路 代码 LCR 027.回文链表 题目 思路 代码 链表中倒数第k个结点 链表中倒数第k个结点_牛客题霸_牛客网 (nowcoder.com)https://www.nowcoder.com/practice/529d3ae5a407492994ad2a246518148a?tpId…

Web3游戏的十字路口:沿用传统IP还是另起炉灶?

人们经常问我对 Web3 游戏有什么看法。因此&#xff0c;我想以书面形式概述一下我目前的想法。 让我先澄清一下&#xff1a;我不是专家。这不是一篇深入探讨游戏世界精细指标如 MAU 或 D14 等的全面分析。请把这看作是我根据个人交流和研究&#xff0c;这反映我在游戏领域关注…

学习Opencv(蝴蝶书/C++)相关——1. 前言 和 第1章.概述

文章目录 1. 整体架构1.1 OpenCV3.01.2 Opencv4.xX. Opencv cheatsheet(小抄)1. 整体架构 1.1 OpenCV3.0 对于Opencv3.x版本,网上最常见的图,图自OpenCV Tutorial-Itseez 现在已经不是500+的算法了,而是2500+,详见:About

喜报|英码科技荣登“广州首届百家新锐企业名单”、“2022年度中国好技术项目库名单”榜单

近日&#xff0c;英码科技喜报连连&#xff0c;在刚刚公布的2022年度“中国好技术”项目库入选名单和广州首届百家新锐企业名单中&#xff0c;英码科技凭借出色的技术创新能力和优秀的企业竞争力荣登榜单。 2022年度“中国好技术” 近期&#xff0c;2022年度“中国好技术”征集…

如何从站长的角度选择高防CDN以节省成本

在当今的数字化世界中&#xff0c;网站站长需要面对越来越复杂的网络安全威胁&#xff0c;如DDoS攻击、恶意爬虫和恶意请求等。为了保护网站的可用性和数据安全&#xff0c;站长通常会寻求使用高防CDN&#xff08;内容分发网络&#xff09;。然而&#xff0c;如何在选择高防CDN…

隐私保护多领域推荐的紧密度共聚类联邦概率偏好分布模型

论文链接 Federated Probabilistic Preference Distribution Modelling with Compactness Co-Clustering for Privacy-Preserving Multi-Domain Recommendation 引言 这篇论文提出的概率偏好分布是通过使用高斯分布来表示用户和项目的偏好。在论文中&#xff0c;作者提出了一…

11.1 Linux 设备树

一、什么是设备树&#xff1f; 设备树(Device Tree)&#xff0c;描述设备树的文件叫做 DTS(DeviceTree Source)&#xff0c;这个 DTS 文件采用树形结构描述板级设备&#xff0c;也就是开发板上的设备信息&#xff1a; 树的主干就是系统总线&#xff0c; IIC 控制器、 GPIO 控制…

EASYX中的消息处理

eg1:点击鼠标的左键右键绘制不同的图形 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <easyx.h> #include <iostream> #include <math.h> #include <stdlib.h> #include <conio.h> #include <time.h> #define PI …

selenium自动化测试入门 —— 操作浏览器!

1、启动浏览器&#xff08;实例化浏览器&#xff09; 启动Chrome浏览器&#xff08;驱动已放入path环境变量下&#xff09; driver webdriver.Chrome() 指定驱动路径驱动Chrome 浏览器 # .\driver\chromedriver.exe 为驱动存放位置,可以是相对路径或者绝对路径 driver we…

包装印刷行业万界星空科技云MES解决方案

印刷业的机械化程度在国内制造行业内算是比较高的&#xff0c;不算是劳动密集型企业。如书本的装订、包装的模切、烫金、糊盒等都已经有了全自动设备。印刷厂除了部分手工必须采用人工外&#xff0c;大部分都可以采用机器&#xff0c;也就意味着可以由少量工人生产出大量产品。…