竞赛选题 深度学习手势检测与识别算法 - opencv python

news2024/11/25 3:03:16

文章目录

  • 0 前言
  • 1 实现效果
  • 2 技术原理
    • 2.1 手部检测
      • 2.1.1 基于肤色空间的手势检测方法
      • 2.1.2 基于运动的手势检测方法
      • 2.1.3 基于边缘的手势检测方法
      • 2.1.4 基于模板的手势检测方法
      • 2.1.5 基于机器学习的手势检测方法
    • 3 手部识别
      • 3.1 SSD网络
      • 3.2 数据集
      • 3.3 最终改进的网络结构
  • 4 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习图像识别手势检测识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 实现效果

废话不多说,先看看学长实现的效果吧
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2 技术原理

2.1 手部检测

主流的手势分割方法主要分为静态手势分割和动态手势分割两大类方法。

  • 静态手势分割方法: 单张图片利用手和背景的差异进行分割,

  • 动态手势分割方法: 利用了视频帧序列的信息来分割。

2.1.1 基于肤色空间的手势检测方法

肤色是手和其他背景最明显的区分特征,手的颜色范围较统一并且有聚类性,基于肤色的分割方法还有处理速度快,对旋转、局部遮挡、姿势变换具有不变性,因此利用不同的颜色空间来进行手势分割是现在最常用的方法。

肤色分割的方法主要有以下几种:基于参数、非参数的显式肤色聚类方法。参数模型使用高斯颜色分布,非参数模型则是从训练数据中获得肤色直方图来对肤色区间进行估计。肤色聚类显式地在某个特定的颜色空间中定义了肤色的边界,广义上看是一种静态的肤色滤波器,如Khan根据检测到的脸部提出了一种自适应的肤色模型。

肤色是一种低级的特征,对计算的消耗很少,感知上均匀的颜色空间如CIELAB,CIELUV等已经被用于进行肤色检测。正交的颜色空间如,YCbCr,YCgCr,YIQ,YUV等也被用与肤色分割,如Julilian等使用YCrCb颜色空间,利用其中的CrCb分量来建立高斯模型进行分割。使用肤色分割的问题是误检率非常高,所以需要通过颜色校正,图像归一化等操作来降低外界的干扰,提高分割的准确率。

基于YCrCb颜色空间Cr, Cb范围筛选法手部检测,实现代码如下:

# 肤色检测之二: YCrCb中 140<=Cr<=175 100<=Cb<=120
img = cv2.imread(imname, cv2.IMREAD_COLOR)
ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb) # 把图像转换到YUV色域
(y, cr, cb) = cv2.split(ycrcb) # 图像分割, 分别获取y, cr, br通道分量图像

skin2 = np.zeros(cr.shape, dtype=np.uint8) # 根据源图像的大小创建一个全0的矩阵,用于保存图像数据
(x, y) = cr.shape # 获取源图像数据的长和宽

# 遍历图像, 判断Cr和Br通道的数值, 如果在指定范围中, 则置把新图像的点设为255,否则设为0
for i in  range(0, x): 
	for j in  range(0, y):
		if (cr[i][j] >  140) and (cr[i][j] <  175) and (cb[i][j] >  100) and (cb[i][j] <  120):
			skin2[i][j] =  255
		else:
			skin2[i][j] =  0

cv2.imshow(imname, img)
cv2.imshow(imname +  " Skin2 Cr+Cb", skin2)

检测效果:

在这里插入图片描述
在这里插入图片描述

2.1.2 基于运动的手势检测方法

基于运动的手势分割方法将运动的前景和静止的背景分割开,主要有背景差分法、帧间差分法、光流法等。

帧间差分选取视频流中前后相邻的帧进行差分,设定一定的阈值来区分前景和后景,从而提取目标物体。帧差法原理简单,计算方便且迅速,但是当前后景颜色相同时检测目标会不完整,静止目标则无法检测。

背景差分需要建立背景图,利用当前帧和背景图做差分,从而分离出前后景。背景差分在进行目标检测中使用较多。有基于单高斯模型,双高斯模型的背景差分,核密度估计法等。景差分能很好的提取完整的目标,但是受环境变化的影响比较大,因此需要建立稳定可靠的背景模型和有效的背景更新方法。

1, 读取摄像头
2, 背景减除
fgbg1 = cv.createBackgroundSubtractorMOG2(detectShadows=True)
fgbg2 = cv.createBackgroundSubtractorKNN(detectShadows=True)
# fgmask = fgbg1.apply(frame)
fgmask = fgbg2.apply(frame) # 两种方法
3, 将没帧图像转化为灰度图像 在高斯去噪 最后图像二值化
gray = cv.cvtColor(res, cv.COLOR_BGR2GRAY)
blur = cv.GaussianBlur(gray, (11, 11), 0)
ret, binary = cv.threshold(blur, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
4, 选取手部的 ROI 区域 绘制轮廓
gesture = dst[50:600, 400:700]
contours, heriachy = cv.findContours(gesture, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) # 获取轮廓本身
for i, contour in enumerate(contours): # 获取轮廓
cv.drawContours(frame, contours, i, (0, 0, 255), -1) # 绘制轮廓
print(i)

在这里插入图片描述

2.1.3 基于边缘的手势检测方法

基于边缘的手势分割方法利用边缘检测算子在图像中计算出图像的轮廓,常用来进行边缘检测的一阶算子有(Roberts算子,Prewitt算子,Sobel算子,Canny算子等),二阶算子则有(Marr-
Hildreth算子,Laplacian算子等),这些算子在图像中找到手的边缘。但是边缘检测对噪声比较敏感,因此精确度往往不高。

边缘检测代码示例:

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import scipy.signal as signal     # 导入sicpy的signal模块

# Laplace算子
suanzi1 = np.array([[0, 1, 0],  
                    [1,-4, 1],
                    [0, 1, 0]])

# Laplace扩展算子
suanzi2 = np.array([[1, 1, 1],
                    [1,-8, 1],
                    [1, 1, 1]])

# 打开图像并转化成灰度图像
image = Image.open("pika.jpg").convert("L")
image_array = np.array(image)

# 利用signal的convolve计算卷积
image_suanzi1 = signal.convolve2d(image_array,suanzi1,mode="same")
image_suanzi2 = signal.convolve2d(image_array,suanzi2,mode="same")

# 将卷积结果转化成0~255
image_suanzi1 = (image_suanzi1/float(image_suanzi1.max()))*255
image_suanzi2 = (image_suanzi2/float(image_suanzi2.max()))*255

# 为了使看清边缘检测结果,将大于灰度平均值的灰度变成255(白色)
image_suanzi1[image_suanzi1>image_suanzi1.mean()] = 255
image_suanzi2[image_suanzi2>image_suanzi2.mean()] = 255

# 显示图像
plt.subplot(2,1,1)
plt.imshow(image_array,cmap=cm.gray)
plt.axis("off")
plt.subplot(2,2,3)
plt.imshow(image_suanzi1,cmap=cm.gray)
plt.axis("off")
plt.subplot(2,2,4)
plt.imshow(image_suanzi2,cmap=cm.gray)
plt.axis("off")
plt.show()

2.1.4 基于模板的手势检测方法

基于模版的手势分割方法需要建立手势模版数据库,数据库记录了不同手势不同场景下的手势模版。计算某个图像块和数据库中各个手势的距离,然后使用滑动窗遍历整幅图像进行相同的计算,从而在图像正确的位置找到数据库中的最佳匹配。模版匹配对环境和噪声鲁棒,但是数据库需要涵盖各种手型、大小、位置、角度的手势,并且因为需要遍历整个图像进行相同的计算,实时性较差。

2.1.5 基于机器学习的手势检测方法

贝叶斯网络,聚类分析,高斯分类器等等也被用来做基于肤色的分割。随机森林是一种集成的分类器,易于训练并且准确率较高,被用在分割和手势识别上。建立肤色分类的模型,并且使用随机森林对像素进行分类,发现随机森林得到的分割结果比上述的方法都要准确.

3 手部识别

毫无疑问,深度学习做图像识别在准确度上拥有天然的优势,对手势的识别使用深度学习卷积网络算法效果是非常优秀的。

3.1 SSD网络

SSD网络是2016年提出的卷积神经网络,其在物体检测上取得了很好的效果。SSD网络和FCN网络一样,最终的预测结果利用了不同尺度的特征图信息,在不同尺度的特征图上进行检测,大的特征图可以检测小物体,小特征图检测大物体,使用金字塔结构的特征图,从而实现多尺度的检测。网络会对每个检测到物体的检测框进行打分,得到框中物体所属的类别,并且调整边框的比例和位置以适应对象的形状。

在这里插入图片描述

3.2 数据集

我们实验室自己采集的数据集:

数据集包含了48个手势视频,这些视频是由谷歌眼镜拍摄的,视频中以第一人称视角拍摄了室内室外的多人互动。数据集中包含4个类别的手势:自己的左右手,其他人的左右手。数据集中包含了高质量、像素级别标注的分割数据集和检测框标注数据集,视频中手不受到任何约束,包括了搭积木,下棋,猜谜等活动。

在这里插入图片描述

需要数据集的同学可以联系学长获取

3.3 最终改进的网络结构

在这里插入图片描述
在这里插入图片描述

最后整体实现效果还是不错的:
在这里插入图片描述

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1170969.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Oracle安全基线检查

一、账户安全 1、禁止SYSDBA用户远程连接 用户具备数据库超级管理员(SYSDBA)权限的用户远程管理登录SYSDBA用户只能本地登录,不能远程。REMOTE_LOGIN_PASSWORDFILE函数的Value值为NONE。这意味着禁止共享口令文件,只能通过操作系统认证登录Oracle数据库。 1)检查REMOTE…

【漏洞复现】Apache_HTTPD_换行解析漏洞(CVE-2017-15715)

感谢互联网提供分享知识与智慧&#xff0c;在法治的社会里&#xff0c;请遵守有关法律法规 文章目录 1.1、漏洞描述1.2、漏洞等级1.3、影响版本1.4、漏洞复现1、基础环境2、漏洞扫描3、漏洞验证 1.5、深度利用GetShell 1.6、修复建议 说明内容漏洞编号CVE-2017-15715漏洞名称Ap…

基础课20——智能客服系统的使用维护

1.智能客服系统的维护 智能客服系统在上线后&#xff0c;仍然需要定期的维护和更新。这是因为智能客服系统是一个复杂的软件系统&#xff0c;涉及到多个组件和功能&#xff0c;需要不断优化和改进以满足用户需求和保持市场竞争力。 保持系统的稳定性和性能&#xff1a;随着用…

医学影像处理系统源码(PACS)

通用医学图像处理平台覆盖全模态、多维度临床应用&#xff0c;助力提供医学图像分析的全景高清视角&#xff0c;赋能临床精准诊断。 一、PACS覆盖CT、MR、MI等多模态影像及心血管、肿瘤、神经等多临床场景&#xff0c;助力医生精准高效诊断。 二、临床应用 1.基础应用 &#…

大模型在代码缺陷检测领域的实践

静态代码扫描(SA)能快速识别代码缺陷&#xff0c;如空指针访问、数组越界等&#xff0c;以较高ROI保障质量及提升交付效率。当前扫描能力主要依赖人工经验生成规则&#xff0c;泛化能力弱且迭代滞后&#xff0c;导致漏出。本文提出基于代码知识图谱解决给机器学什么的问题&…

基础课19——客服系统知识库的搭建流程

1.收集整理业务数据 注意&#xff1a;我们在做业务数据收集时&#xff0c;往往是甲方提供给我们的&#xff0c;这时就需要确定一个标准&#xff0c;否则对知识库梳理工作会带来很大的难度&#xff0c;建议和甲方沟通确认一个双方都统一的知识库原材料。 2.创建知识库 在创建知…

JavaScript函数传递的秘密武器:apply、call和bind的完全指南

&#x1f601; 作者简介&#xff1a;一名大四的学生&#xff0c;致力学习前端开发技术 ⭐️个人主页&#xff1a;夜宵饽饽的主页 ❔ 系列专栏&#xff1a;JavaScript小贴士 &#x1f450;学习格言&#xff1a;成功不是终点&#xff0c;失败也并非末日&#xff0c;最重要的是继续…

MySQL:一文掌握MySQL索引

目录 概念优缺点索引的数据结构Hash索引有序数组索引二叉搜索树平衡二叉树B树B树 索引的物理结构MyISAM存储引擎InnoDB存储引擎 索引的分类页、区、段change buffer 和索引回表和覆盖索引索引优化面试题索引哪些情况下会失效什么是索引下推主键选择自增和uuid的区别 概念 官方…

一键混剪软件、根据模板批量剪辑、多种分割、多种合并、多种混剪、文案提取、文字转语音等

在这个短视频时代&#xff0c;视频剪辑已经成为了一个炙手可热的行业。但是&#xff0c;对于大多数人来说&#xff0c;视频剪辑是一项既复杂又繁琐的工作。不过&#xff0c;现在有了我们的新伙伴——视频闪闪&#xff0c;一键混剪软件&#xff0c;您将迎来全新的视频剪辑体验&a…

Spring源码编译步骤

Spring源码学习 一、Gradle 为什么下载gradle呢&#xff1f;我们平时不都是用maven吗&#xff1f;原因只有一个&#xff0c;spring源码是用gradle构建的&#xff0c;所以&#xff0c;你想看spring源码必须安装和学会使用gradle&#xff0c;那么&#xff0c;让我们开始gradle之…

【RabbitMQ】 RabbitMQ 消息的延迟 —— 深入探索 RabbitMQ 的死信交换机,消息的 TTL 以及延迟队列

文章目录 一、死信交换机1.1 什么是死信和死信交换机1.2 死信交换机和死信队列的创建方式 二、消息的 TTL2.1 什么是消息的 TTL2.2 基于死信交换机和 TTL 实现消息的延迟 三、基于 DelayExchang 插件实现延迟队列3.1 安装 DelayExchang 插件3.2 DelayExchang 实现消息延迟的原理…

通讯录(C语言文件版本)(超详细过程)

❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️ ❇️❇️❇️❇️ 不同的信念 ❇️❇️❇️❇️ ❇️❇️❇️ 决定不同的命运 ❇️❇️❇️ ❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️ &#x1f4d6;通讯录 ✅具备的功能 ℹ️需要的头文件名 #include<…

二叉树按二叉链表形式存储,试编写一个判别给定二叉树是否是完全二叉树的算法

完全二叉树&#xff1a;就是每层横着划过去是连起来的&#xff0c;中间不会断开 比如下面的左图就是完全二叉树 再比如下面的右图就是非完全二叉树 那我们可以采用层序遍历的方法&#xff0c;借助一个辅助队列 当辅助队列不空的时候&#xff0c;出队头元素&#xff0c;入队头…

开发知识点-PHP从小白到拍簧片

从小白到拍簧片 位异或运算&#xff08;^ &#xff09;引用符号(&)strlen() 函数base64_encode预定义 $_POST 变量session_start($array);操作符php 命令set_time_limit(7200)isset()PHP 命名空间(namespace)new 实例化类extends 继承 一个类使用另一个类方法error_reporti…

如何利用Jmeter从0到1做一次完整的压测?这2个步骤很关键!

压测&#xff0c;在很多项目中都有应用&#xff0c;是测试小伙伴必备的一项基本技能&#xff0c;刚好最近接手了一个小游戏的压测任务&#xff0c;一轮压测下来&#xff0c;颇有收获&#xff0c;赶紧记录下来&#xff0c;与大家分享一下&#xff0c;希望大家能少踩坑。 一、压…

ADO实战指南

这里写目录标题 ADO概念ADO主要对象对象间的相互联系对象模型示意图 关键代码关于代码中的一些问题设置字符串连接对象OLE DB是什么&#xff1f;与ADO的关系是什么&#xff1f;执行命令时&#xff0c;使用连接对象来访问数据库。close与nothing做了什么事&#xff1f;连接对象为…

Splunk 创建特色 dashboard 报表

1: 背景: 对原有的dashboard 进行增加点东西,特别是文字部分: 比如: 增加:“this is a guidline for how to use performance". 这段话,就不能写在title, 那样,这段文字,会出现在dashboard 的PDF 文件的分割线的上面,不符合要求。 2: 解决问题: 正确的做法是…

torch安装

https://download.pytorch.org/whl/torch_stable.html cp36 是python3.6的意思 python3.6对应torch1.8

外卖系统内部机理揭秘:了解更多

外卖系统是一个涉及多个环节和技术的复杂系统&#xff0c;包括前端用户交互、后端数据处理、订单管理和配送等多个方面。 技术架构概述&#xff1a; 前端应用程序&#xff1a; 包括用户界面和餐厅界面&#xff0c;常见的技术包括 HTML、CSS、JavaScript 和前端框架&#xff…

【入门Flink】- 06Flink作业提交流程【待完善】

Standalone 会话模式作业提交流程 代码生成任务的过程&#xff1a; 逻辑流图&#xff08;StreamGraph&#xff09;→ 作业图&#xff08;JobGraph&#xff09;→ 执行图&#xff08;ExecutionGraph&#xff09;→物理图&#xff08;Physical Graph&#xff09;。 作业图算子链…