2023李宏毅机器学习HW05样例代码中文注释版

news2024/11/24 23:00:40

这里只是 2023 李宏毅机器学习 HW05 样例代码的中文注释版的分享,下面的内容绝大部分是样例代码,补充了小部分函数的功能解释,没有做函数功能上的修改,是 Simple baseline 版本。

notebook 代码下载: [EN] [ZH]

文章目录

  • 作业描述
  • 下载和导入需要的包
  • 固定随机数种子
  • 数据集
    • 英-中 对应的语料
    • 测试集
    • 数据集下载
    • 语言
    • 预处理文件
    • 划分训练/验证集
    • 子词单位
    • 数据二值化(使用 fairseq)
  • 实验配置
  • 日志
  • CUDA 环境
  • 数据导入
    • 我们采用了 TranslationTask(来自 fairseq)
  • 数据集迭代器
  • 模型架构
  • 编码器
    • 注意力
  • 解码器
    • Seq2Seq
  • 模型初始化
    • 架构相关配置
  • 优化
    • 损失(Loss): Label Smoothing Regularization
    • 优化器: Adam + 学习率调度
    • 调度可视化
  • 训练过程
    • 训练
    • 验证 & 推测
  • 保存和加载模型权重
  • Main
    • 训练循环
  • Submission
    • 确定用于生成 submission 的模型权重
    • 生成预测
  • Back-translation
    • 训练一个 backward translation 模型
    • 用后向模型生成人造数据
      • 下载单语言数据
      • TODO: 清洗语料
      • TODO: 子词单位
      • 二值化
      • TODO: 用后向模型生成人造数据
      • TODO: 创建新的数据集
  • References

作业描述

  • 英译中(繁体)

    • 输入: an English sentence (e.g. tom is a student .)
    • 输出: the Chinese translation (e.g. 湯姆 是 個 學生 。)
  • TODO

    • 训练一个 seq2seq 的简单的 RNN 模型来完成翻译
    • 转变模型架构为 transformer,提升性能
    • 使用 Back-translation 进一步提升性能
!nvidia-smi

下载和导入需要的包

!pip install 'torch>=1.6.0' editdistance matplotlib sacrebleu sacremoses sentencepiece tqdm wandb
!pip install --upgrade jupyter ipywidgets
!git clone https://github.com/pytorch/fairseq.git
!cd fairseq && git checkout 3f6ba43
!pip install --upgrade ./fairseq/
import sys
import pdb
import pprint
import logging
import os
import random

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import data
import numpy as np
import tqdm.auto as tqdm
from pathlib import Path
from argparse import Namespace
from fairseq import utils

import matplotlib.pyplot as plt

固定随机数种子

seed = 33
random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True

数据集

英-中 对应的语料

  • TED2020
    • 原始: 400,726 (句子)
    • 处理后: 394,052 (句子)

测试集

  • 大小: 4,000 (句子)
  • 没有提供中文的翻译。(.zh)文件是伪翻译,其中每一行是’。’

数据集下载

data_dir = './DATA/rawdata'
dataset_name = 'ted2020'
urls = (
    "https://github.com/figisiwirf/ml2023-hw5-dataset/releases/download/v1.0.1/ml2023.hw5.data.tgz",
    "https://github.com/figisiwirf/ml2023-hw5-dataset/releases/download/v1.0.1/ml2023.hw5.test.tgz"
)
file_names = (
    'ted2020.tgz', # train & dev
    'test.tgz', # test
)
prefix = Path(data_dir).absolute() / dataset_name

prefix.mkdir(parents=True, exist_ok=True)
for u, f in zip(urls, file_names):
    path = prefix/f
    if not path.exists():
        !wget {u} -O {path}
    if path.suffix == ".tgz":
        !tar -xvf {path} -C {prefix}
    elif path.suffix == ".zip":
        !unzip -o {path} -d {prefix}
!mv {prefix/'raw.en'} {prefix/'train_dev.raw.en'}
!mv {prefix/'raw.zh'} {prefix/'train_dev.raw.zh'}
!mv {prefix/'test.en'} {prefix/'test.raw.en'}
!mv {prefix/'test.zh'} {prefix/'test.raw.zh'}

语言

src_lang = 'en'
tgt_lang = 'zh'

data_prefix = f'{prefix}/train_dev.raw'
test_prefix = f'{prefix}/test.raw'
!head {data_prefix+'.'+src_lang} -n 5
!head {data_prefix+'.'+tgt_lang} -n 5

预处理文件

  • strQ2B(): 将全角字符转变为半角字符
  • clean_s(): 清洗文本,将逗号/破折号/空格等字符删除
  • len_s(): 返回文本长度
  • clean_corpus: 使用上面的函数对指定的文本文件进行清洗
import re

def strQ2B(ustring):
    """Full width -> half width"""
    # reference:https://ithelp.ithome.com.tw/articles/10233122
    ss = []
    for s in ustring:
        rstring = ""
        for uchar in s:
            inside_code = ord(uchar)
            if inside_code == 12288:  # Full width space: direct conversion
                inside_code = 32
            elif (inside_code >= 65281 and inside_code <= 65374):  # Full width chars (except space) conversion
                inside_code -= 65248
            rstring += chr(inside_code)
        ss.append(rstring)
    return ''.join(ss)

def clean_s(s, lang):
    if lang == 'en':
        s = re.sub(r"\([^()]*\)", "", s) # remove ([text])
        s = s.replace('-', '') # remove '-'
        s = re.sub('([.,;!?()\"])', r' \1 ', s) # keep punctuation
    elif lang == 'zh':
        s = strQ2B(s) # Q2B
        s = re.sub(r"\([^()]*\)", "", s) # remove ([text])
        s = s.replace(' ', '')
        s = s.replace('—', '')
        s = s.replace('“', '"')
        s = s.replace('”', '"')
        s = s.replace('_', '')
        s = re.sub('([。,;!?()\"~「」])', r' \1 ', s) # keep punctuation
    s = ' '.join(s.strip().split())
    return s

def len_s(s, lang):
    if lang == 'zh':
        return len(s)
    return len(s.split())

def clean_corpus(prefix, l1, l2, ratio=9, max_len=1000, min_len=1):
    if Path(f'{prefix}.clean.{l1}').exists() and Path(f'{prefix}.clean.{l2}').exists():
        print(f'{prefix}.clean.{l1} & {l2} exists. skipping clean.')
        return
    with open(f'{prefix}.{l1}', 'r') as l1_in_f:
        with open(f'{prefix}.{l2}', 'r') as l2_in_f:
            with open(f'{prefix}.clean.{l1}', 'w') as l1_out_f:
                with open(f'{prefix}.clean.{l2}', 'w') as l2_out_f:
                    for s1 in l1_in_f:
                        s1 = s1.strip()
                        s2 = l2_in_f.readline().strip()
                        s1 = clean_s(s1, l1)
                        s2 = clean_s(s2, l2)
                        s1_len = len_s(s1, l1)
                        s2_len = len_s(s2, l2)
                        if min_len > 0: # remove short sentence
                            if s1_len < min_len or s2_len < min_len:
                                continue
                        if max_len > 0: # remove long sentence
                            if s1_len > max_len or s2_len > max_len:
                                continue
                        if ratio > 0: # remove by ratio of length
                            if s1_len/s2_len > ratio or s2_len/s1_len > ratio:
                                continue
                        print(s1, file=l1_out_f)
                        print(s2, file=l2_out_f)
clean_corpus(data_prefix, src_lang, tgt_lang)
clean_corpus(test_prefix, src_lang, tgt_lang, ratio=-1, min_len=-1, max_len=-1)
!head {data_prefix+'.clean.'+src_lang} -n 5
!head {data_prefix+'.clean.'+tgt_lang} -n 5

划分训练/验证集

valid_ratio = 0.01 # 3000~4000 就够用了
train_ratio = 1 - valid_ratio
if (prefix/f'train.clean.{src_lang}').exists() \
and (prefix/f'train.clean.{tgt_lang}').exists() \
and (prefix/f'valid.clean.{src_lang}').exists() \
and (prefix/f'valid.clean.{tgt_lang}').exists():
    print(f'train/valid splits exists. skipping split.')
else:
    line_num = sum(1 for line in open(f'{data_prefix}.clean.{src_lang}'))
    labels = list(range(line_num))
    random.shuffle(labels)
    for lang in [src_lang, tgt_lang]:
        train_f = open(os.path.join(data_dir, dataset_name, f'train.clean.{lang}'), 'w')
        valid_f = open(os.path.join(data_dir, dataset_name, f'valid.clean.{lang}'), 'w')
        count = 0
        for line in open(f'{data_prefix}.clean.{lang}', 'r'):
            if labels[count]/line_num < train_ratio:
                train_f.write(line)
            else:
                valid_f.write(line)
            count += 1
        train_f.close()
        valid_f.close()

子词单位

不在词表中的单词(OOV)是机器翻译面临的主要问题。这个问题可以通过使用子词(subword)作为基本单位来缓解

  • 我们将使用 sentencepiece 包
  • 选择 unigram 或者 byte-pair encoding (BPE) 算法
import sentencepiece as spm
vocab_size = 8000
if (prefix/f'spm{vocab_size}.model').exists():
    print(f'{prefix}/spm{vocab_size}.model exists. skipping spm_train.')
else:
    spm.SentencePieceTrainer.train(
        input=','.join([f'{prefix}/train.clean.{src_lang}',
                        f'{prefix}/valid.clean.{src_lang}',
                        f'{prefix}/train.clean.{tgt_lang}',
                        f'{prefix}/valid.clean.{tgt_lang}']),
        model_prefix=prefix/f'spm{vocab_size}',
        vocab_size=vocab_size,
        character_coverage=1,
        model_type='unigram', # 'bpe' works as well
        input_sentence_size=1e6,
        shuffle_input_sentence=True,
        normalization_rule_name='nmt_nfkc_cf',
    )
spm_model = spm.SentencePieceProcessor(model_file=str(prefix/f'spm{vocab_size}.model'))
in_tag = {
    'train': 'train.clean',
    'valid': 'valid.clean',
    'test': 'test.raw.clean',
}
for split in ['train', 'valid', 'test']:
    for lang in [src_lang, tgt_lang]:
        out_path = prefix/f'{split}.{lang}'
        if out_path.exists():
            print(f"{out_path} exists. skipping spm_encode.")
        else:
            with open(prefix/f'{split}.{lang}', 'w') as out_f:
                with open(prefix/f'{in_tag[split]}.{lang}', 'r') as in_f:
                    for line in in_f:
                        line = line.strip()
                        tok = spm_model.encode(line, out_type=str)
                        print(' '.join(tok), file=out_f)
!head {data_dir+'/'+dataset_name+'/train.'+src_lang} -n 5
!head {data_dir+'/'+dataset_name+'/train.'+tgt_lang} -n 5

数据二值化(使用 fairseq)

配对源语言和目标语言的文件。

如果没有对应的文件,就生成伪配对来方便二值化。

binpath = Path('./DATA/data-bin', dataset_name)
if binpath.exists():
    print(binpath, "exists, will not overwrite!")
else:
    !python -m fairseq_cli.preprocess \
        --source-lang {src_lang}\
        --target-lang {tgt_lang}\
        --trainpref {prefix/'train'}\
        --validpref {prefix/'valid'}\
        --testpref {prefix/'test'}\
        --destdir {binpath}\
        --joined-dictionary\
        --workers 2

实验配置

config = Namespace(
    datadir = "./DATA/data-bin/ted2020",
    savedir = "./checkpoints/rnn",
    source_lang = src_lang,
    target_lang = tgt_lang,

    # 设置取数据和处理数据时 cpu 的线程数
    num_workers=2,
    # batch size 按照 token 数量来计算。梯度累积可以增加有效的 batch size。
    max_tokens=8192,
    accum_steps=2,

    # 学习率通过 Noam 调度器进行计算。你可以修改lr_factor来调整最大的学习率。
    lr_factor=2.,
    lr_warmup=4000,

    # 梯度裁剪可以缓解梯度爆炸
    clip_norm=1.0,

    # 训练的最大轮数
    max_epoch=15,
    start_epoch=1,

    # 集束搜索中的 beam size
    beam=5,
    # 生成的序列的最大长度为 ax + b,其中 x 是源长度
    max_len_a=1.2,
    max_len_b=10,
    # 解码时,通过去除 sentencepiece 符号和 jieba 分词来后处理句子。
    post_process = "sentencepiece",

    # 检查点
    keep_last_epochs=5,
    resume=None, # if resume 则根据 checkpoint name 进行恢复(文件保存在 config.savedir 下)

    # 日志记录
    use_wandb=False,
)

日志

  • logging 包用于记录普通的信息
  • wandb 记录训练过程中的损失/bleu等
logging.basicConfig(
    format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
    level="INFO", # "DEBUG" "WARNING" "ERROR"
    stream=sys.stdout,
)
proj = "hw5.seq2seq"
logger = logging.getLogger(proj)
if config.use_wandb:
    import wandb
    wandb.init(project=proj, name=Path(config.savedir).stem, config=config)

CUDA 环境

cuda_env = utils.CudaEnvironment()
utils.CudaEnvironment.pretty_print_cuda_env_list([cuda_env])
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

数据导入

我们采用了 TranslationTask(来自 fairseq)

  • 用于加载上面创建的二值化数据
  • 实现数据迭代器(dataloader)
  • 内置的 task.source_dictionary 和 task.target_dictionary 也很有用
  • 实现集束搜索解码器
from fairseq.tasks.translation import TranslationConfig, TranslationTask

## setup task
task_cfg = TranslationConfig(
    data=config.datadir,
    source_lang=config.source_lang,
    target_lang=config.target_lang,
    train_subset="train",
    required_seq_len_multiple=8,
    dataset_impl="mmap",
    upsample_primary=1,
)
task = TranslationTask.setup_task(task_cfg)
logger.info("loading data for epoch 1")
task.load_dataset(split="train", epoch=1, combine=True) # combine if you have back-translation data.
task.load_dataset(split="valid", epoch=1)
sample = task.dataset("valid")[1]
pprint.pprint(sample)
pprint.pprint(
    "Source: " + \
    task.source_dictionary.string(
        sample['source'],
        config.post_process,
    )
)
pprint.pprint(
    "Target: " + \
    task.target_dictionary.string(
        sample['target'],
        config.post_process,
    )
)

数据集迭代器

  • 控制每个 batch 不超过 N 个 token,这样可以优化 GPU 内存效率
  • 在每个 epoch 都对训练集进行随机打乱
  • 忽略超过最大长度的句子
  • 将一个 batch 中的所有句子填充到相同的长度,这样可以利用 GPU 进行并行计算
  • 添加 eos 并移动一个 token
    • teacher forcing 技术: 为了训练模型根据前缀预测下一个 token,我们将移动后的目标序列作为解码器的输入。
    • 一般来说,在目标前面加上 bos 就可以了(如下图所示)
      seq2seq
    • 但是在 fairseq 中,这是通过将 eos token 移动到开头来实现的。在实验上,这个操作拥有相同的效果。例如:
    # 目标输出(target)和解码器输入(prev_output_tokens):
                   eos = 2
                target = 419,  711,  238,  888,  792,   60,  968,    8,    2
    prev_output_tokens = 2,  419,  711,  238,  888,  792,   60,  968,    8
    
def load_data_iterator(task, split, epoch=1, max_tokens=4000, num_workers=1, cached=True):
    batch_iterator = task.get_batch_iterator(
        dataset=task.dataset(split),
        max_tokens=max_tokens,
        max_sentences=None,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            max_tokens,
        ),
        ignore_invalid_inputs=True,
        seed=seed,
        num_workers=num_workers,
        epoch=epoch,
        disable_iterator_cache=not cached,
        # 如果设置为 False(cached=True),可以加快训练速度。
        # 但是,如果设置为 False,那么在第一次调用这个方法之后,再改变 max_tokens就没有效果了。
    )
    return batch_iterator

demo_epoch_obj = load_data_iterator(task, "valid", epoch=1, max_tokens=20, num_workers=1, cached=False)
demo_iter = demo_epoch_obj.next_epoch_itr(shuffle=True)
sample = next(demo_iter)
sample
  • each batch is a python dict, with string key and Tensor value. Contents are described below:
batch = {
    "id": id, # id for each example
    "nsentences": len(samples), # batch size (sentences)
    "ntokens": ntokens, # batch size (tokens)
    "net_input": {
        "src_tokens": src_tokens, # sequence in source language
        "src_lengths": src_lengths, # sequence length of each example before padding
        "prev_output_tokens": prev_output_tokens, # right shifted target, as mentioned above.
    },
    "target": target, # target sequence
}

模型架构

  • 我们再次继承 fairseq 的编码器、解码器和模型,以便在测试阶段可以直接利用 fairseq 的集束搜索解码器。
from fairseq.models import (
    FairseqEncoder,
    FairseqIncrementalDecoder,
    FairseqEncoderDecoderModel
)

编码器

  • 编码器(Encoder)是一个循环神经网络(RNN)或者 Transformer 中的编码器。下面的描述是针对 RNN 的。对于每一个输入的 token,编码器会生成一个输出向量和一个隐藏状态向量,并且将隐藏状态向量传递给下一步。换句话说,编码器顺序地读入输入序列,并且在每一个时间步输出一个单独的向量,然后在最后一个时间步输出最终的隐藏状态,或者称为内容向量(content vector)。

  • 参数:

    • args
      • encoder_embed_dim: 嵌入的维度,将 one-hot 向量压缩到固定的维度,实现降维的效果
      • encoder_ffn_embed_dim: 隐藏状态和输出向量的维度
      • encoder_layers: RNN 编码器的层数
      • dropout 确定了一个神经元的激活值被设为 0 的概率,用于防止过拟合。通常这个参数在训练时使用,在测试时移除
    • dictionary: fairseq 提供的字典。它用于获取填充索引,进而得到编码器的填充掩码(encoder padding mask)
    • embed_tokens: 一个 token embedding 的实例(nn.Embedding)
  • Inputs:

    • src_tokens: 一个表示英语的整数序列,例如: 1, 28, 29, 205, 2
  • Outputs:

    • outputs: RNN 在每个时间步的输出,可以由注意力机制(Attention)进一步处理
    • final_hiddens: 每个时间步的隐藏状态,会被传递给解码器(decoder)进行解码
    • encoder_padding_mask: 这个参数告诉解码器哪些位置要忽略
class RNNEncoder(FairseqEncoder):
    def __init__(self, args, dictionary, embed_tokens):
        super().__init__(dictionary)
        self.embed_tokens = embed_tokens

        self.embed_dim = args.encoder_embed_dim
        self.hidden_dim = args.encoder_ffn_embed_dim
        self.num_layers = args.encoder_layers

        self.dropout_in_module = nn.Dropout(args.dropout)
        self.rnn = nn.GRU(
            self.embed_dim,
            self.hidden_dim,
            self.num_layers,
            dropout=args.dropout,
            batch_first=False,
            bidirectional=True
        )
        self.dropout_out_module = nn.Dropout(args.dropout)

        self.padding_idx = dictionary.pad()

    def combine_bidir(self, outs, bsz: int):
        out = outs.view(self.num_layers, 2, bsz, -1).transpose(1, 2).contiguous()
        return out.view(self.num_layers, bsz, -1)

    def forward(self, src_tokens, **unused):
        bsz, seqlen = src_tokens.size()

        # 获取 embeddings
        x = self.embed_tokens(src_tokens)
        x = self.dropout_in_module(x)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        # 经过双向的 RNN
        h0 = x.new_zeros(2 * self.num_layers, bsz, self.hidden_dim)
        x, final_hiddens = self.rnn(x, h0)
        outputs = self.dropout_out_module(x)
        # outputs = [sequence len, batch size, hid dim * directions]
        # hidden =  [num_layers * directions, batch size  , hid dim]

        # 由于编码器是双向的,我们需要将两个方向的隐藏状态连接起来
        final_hiddens = self.combine_bidir(final_hiddens, bsz)
        # hidden =  [num_layers x batch x num_directions*hidden]

        encoder_padding_mask = src_tokens.eq(self.padding_idx).t()
        return tuple(
            (
                outputs,  # seq_len x batch x hidden
                final_hiddens,  # num_layers x batch x num_directions*hidden
                encoder_padding_mask,  # seq_len x batch
            )
        )

    def reorder_encoder_out(self, encoder_out, new_order):
        # 这个被用于 fairseq 的集束搜索。它的具体细节和原因并不重要。
        return tuple(
            (
                encoder_out[0].index_select(1, new_order),
                encoder_out[1].index_select(1, new_order),
                encoder_out[2].index_select(1, new_order),
            )
        )

注意力

  • 当输入序列很长时,单独的“内容向量”就不能准确地表示整个序列,注意力机制可以为解码器提供更多信息。

  • 根据当前时间步的解码器embeddings,将编码器输出解码器 embeddings 进行匹配,确定相关性,然后将编码器输出按相关性加权求和作为解码器 RNN 的输入。

  • 常见的注意力实现使用神经网络/点积作为 query(解码器 embeddings)和 key(编码器输出)之间的相关性,然后用 softmax 得到一个分布,最后用该分布对 value(编码器输出)进行加权求和

  • 参数:

    • input_embed_dim: key 的维度,应该是解码器中用于 attend 其他向量的向量的维度
    • source_embed_dim: query 的维度,应该是被 attend 的向量(编码器输出)的维度
    • output_embed_dim: value 的维度,应该是 after attention 的向量的维度,符合下一层的期望,
  • Inputs:

    • inputs: key, 用于 attend 其他向量
    • encoder_outputs: query/value, 被 attend 的向量
    • encoder_padding_mask: 这个告诉解码器应该忽略那些位置
  • Outputs:

    • output: attention 后的上下文向量
    • attention score: attention 的分数
class AttentionLayer(nn.Module):
    def __init__(self, input_embed_dim, source_embed_dim, output_embed_dim, bias=False):
        super().__init__()

        self.input_proj = nn.Linear(input_embed_dim, source_embed_dim, bias=bias)
        self.output_proj = nn.Linear(
            input_embed_dim + source_embed_dim, output_embed_dim, bias=bias
        )

    def forward(self, inputs, encoder_outputs, encoder_padding_mask):
        # inputs: T, B, dim
        # encoder_outputs: S x B x dim
        # padding mask:  S x B

        # 将所有的输入的维度改为 batch first
        inputs = inputs.transpose(1,0) # B, T, dim
        encoder_outputs = encoder_outputs.transpose(1,0) # B, S, dim
        encoder_padding_mask = encoder_padding_mask.transpose(1,0) # B, S

        # 投影到 encoder_outputs 的维度
        x = self.input_proj(inputs)

        # 计算 attention
        # (B, T, dim) x (B, dim, S) = (B, T, S)
        attn_scores = torch.bmm(x, encoder_outputs.transpose(1,2))

        # 取消与 padding 相对应的位置的 attention
        if encoder_padding_mask is not None:
            # leveraging broadcast  B, S -> (B, 1, S)
            encoder_padding_mask = encoder_padding_mask.unsqueeze(1)
            attn_scores = (
                attn_scores.float()
                .masked_fill_(encoder_padding_mask, float("-inf"))
                .type_as(attn_scores)
            )  # FP16 support: cast to float and back

        # 在与源序列对应的维度上进行 softmax
        attn_scores = F.softmax(attn_scores, dim=-1)

        # shape (B, T, S) x (B, S, dim) = (B, T, dim) 加权求和
        x = torch.bmm(attn_scores, encoder_outputs)

        # (B, T, dim)
        x = torch.cat((x, inputs), dim=-1)
        x = torch.tanh(self.output_proj(x)) # concat + linear + tanh

        # restore shape (B, T, dim) -> (T, B, dim)
        return x.transpose(1,0), attn_scores

解码器

  • 解码器的隐藏状态将由编码器的最终隐藏状态(the content vector)初始化
  • 同时,解码器会根据当前时间步的输入(前一时间步的输出)改变其隐藏状态,并生成一个输出
  • 注意力机制可以提高性能
  • seq2seq 的步骤是在解码器中实现的,这样以后 Seq2Seq 类可以接受 RNN 和 Transformer,而不需要进一步修改。
  • 参数:
    • args
      • decoder_embed_dim: 解码器嵌入的维度,类似于 encoder_embed_dim
      • decoder_ffn_embed_dim: 解码器 RNN 隐藏状态的维度,类似于 encoder_ffn_embed_dim
      • decoder_layers: RNN 解码器的层数
      • share_decoder_input_output_embed: 通常,解码器的投影矩阵会与解码器输入 embeddings 共享权重
    • dictionary: fairseq 提供的字典
    • embed_tokens: 一个 token embedding 的实例(nn.Embedding)
  • 输入:
    • prev_output_tokens: 表示右移目标的整数序列,例如: 1, 28, 29, 205, 2
    • encoder_out: 编码器的输出
    • incremental_state: 为了加速测试时的解码,我们会保存每个时间步的隐藏状态。详见forward()。
  • 输出:
    • outputs: 解码器在每个时间步的输出的对数(softmax之前)
    • extra: 未使用
class RNNDecoder(FairseqIncrementalDecoder):
    def __init__(self, args, dictionary, embed_tokens):
        super().__init__(dictionary)
        self.embed_tokens = embed_tokens

        assert args.decoder_layers == args.encoder_layers, f"""seq2seq rnn requires that encoder
        and decoder have same layers of rnn. got: {args.encoder_layers, args.decoder_layers}"""
        assert args.decoder_ffn_embed_dim == args.encoder_ffn_embed_dim*2, f"""seq2seq-rnn requires
        that decoder hidden to be 2*encoder hidden dim. got: {args.decoder_ffn_embed_dim, args.encoder_ffn_embed_dim*2}"""

        self.embed_dim = args.decoder_embed_dim
        self.hidden_dim = args.decoder_ffn_embed_dim
        self.num_layers = args.decoder_layers


        self.dropout_in_module = nn.Dropout(args.dropout)
        self.rnn = nn.GRU(
            self.embed_dim,
            self.hidden_dim,
            self.num_layers,
            dropout=args.dropout,
            batch_first=False,
            bidirectional=False
        )
        self.attention = AttentionLayer(
            self.embed_dim, self.hidden_dim, self.embed_dim, bias=False
        )
        # self.attention = None
        self.dropout_out_module = nn.Dropout(args.dropout)

        if self.hidden_dim != self.embed_dim:
            self.project_out_dim = nn.Linear(self.hidden_dim, self.embed_dim)
        else:
            self.project_out_dim = None

        if args.share_decoder_input_output_embed:
            self.output_projection = nn.Linear(
                self.embed_tokens.weight.shape[1],
                self.embed_tokens.weight.shape[0],
                bias=False,
            )
            self.output_projection.weight = self.embed_tokens.weight
        else:
            self.output_projection = nn.Linear(
                self.output_embed_dim, len(dictionary), bias=False
            )
            nn.init.normal_(
                self.output_projection.weight, mean=0, std=self.output_embed_dim ** -0.5
            )

    def forward(self, prev_output_tokens, encoder_out, incremental_state=None, **unused):
        # 从编码器中提取输出
        encoder_outputs, encoder_hiddens, encoder_padding_mask = encoder_out
        # outputs:          seq_len x batch x num_directions*hidden
        # encoder_hiddens:  num_layers x batch x num_directions*encoder_hidden
        # padding_mask:     seq_len x batch

        if incremental_state is not None and len(incremental_state) > 0:
            # 如果保留了上一个时间步的信息,可以从那里继续,而不是从bos开始
            prev_output_tokens = prev_output_tokens[:, -1:]
            cache_state = self.get_incremental_state(incremental_state, "cached_state")
            prev_hiddens = cache_state["prev_hiddens"]
        else:
            # 增量状态不存在,要么是训练时,要么是测试时的第一个时间步
            # 为seq2seq做准备:将编码器的隐藏状态传递给解码器的隐藏状态
            prev_hiddens = encoder_hiddens

        bsz, seqlen = prev_output_tokens.size()

        # embed tokens
        x = self.embed_tokens(prev_output_tokens)
        x = self.dropout_in_module(x)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        # decoder-to-encoder attention
        if self.attention is not None:
            x, attn = self.attention(x, encoder_outputs, encoder_padding_mask)

        # 经过单向的 RNN
        x, final_hiddens = self.rnn(x, prev_hiddens)
        # outputs = [sequence len, batch size, hid dim]
        # hidden =  [num_layers * directions, batch size  , hid dim]
        x = self.dropout_out_module(x)

        # 投影到 embedding size(如果隐藏状态与 embedding size 不同,并且 share_embedding 为True
        # 就需要做一个额外的投影)
        if self.project_out_dim != None:
            x = self.project_out_dim(x)

        # 投影到 vocab size
        x = self.output_projection(x)

        # T x B x C -> B x T x C
        x = x.transpose(1, 0)

        # if incremental, 则记录当前时间步的隐藏状态,在下一个时间步恢复
        cache_state = {
            "prev_hiddens": final_hiddens,
        }
        self.set_incremental_state(incremental_state, "cached_state", cache_state)

        return x, None

    def reorder_incremental_state(self, incremental_state, new_order):
        # 这个被用于 fairseq 的集束搜索。它的具体细节和原因并不重要。
        cache_state = self.get_incremental_state(incremental_state, "cached_state")
        prev_hiddens = cache_state["prev_hiddens"]
        prev_hiddens = [p.index_select(0, new_order) for p in prev_hiddens]
        cache_state = {
            "prev_hiddens": torch.stack(prev_hiddens),
        }
        self.set_incremental_state(incremental_state, "cached_state", cache_state)
        return

Seq2Seq

  • 编码器解码器组成
  • 接收输入并传递给编码器
  • 编码器的输出传递给解码器
  • 解码器会根据前一时间步的输出以及编码器的输出进行解码
  • 解码完成后,返回解码器的输出
class Seq2Seq(FairseqEncoderDecoderModel):
    def __init__(self, args, encoder, decoder):
        super().__init__(encoder, decoder)
        self.args = args

    def forward(
        self,
        src_tokens,
        src_lengths,
        prev_output_tokens,
        return_all_hiddens: bool = True,
    ):
        """
        Run the forward pass for an encoder-decoder model.
        """
        encoder_out = self.encoder(
            src_tokens, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens
        )
        logits, extra = self.decoder(
            prev_output_tokens,
            encoder_out=encoder_out,
            src_lengths=src_lengths,
            return_all_hiddens=return_all_hiddens,
        )
        return logits, extra

模型初始化

# # 提示: transformer 架构
from fairseq.models.transformer import (
    TransformerEncoder,
    TransformerDecoder,
)

def build_model(args, task):
    """ build a model instance based on hyperparameters """
    src_dict, tgt_dict = task.source_dictionary, task.target_dictionary

    # token embeddings
    encoder_embed_tokens = nn.Embedding(len(src_dict), args.encoder_embed_dim, src_dict.pad())
    decoder_embed_tokens = nn.Embedding(len(tgt_dict), args.decoder_embed_dim, tgt_dict.pad())

    # encoder decoder
    # 提示: TODO: 转变为 TransformerEncoder & TransformerDecoder
    encoder = RNNEncoder(args, src_dict, encoder_embed_tokens)
    decoder = RNNDecoder(args, tgt_dict, decoder_embed_tokens)
    # encoder = TransformerEncoder(args, src_dict, encoder_embed_tokens)
    # decoder = TransformerDecoder(args, tgt_dict, decoder_embed_tokens)

    # 序列到序列的模型
    model = Seq2Seq(args, encoder, decoder)

    # 初始化 seq2seq 模型很重要, 需要额外的处理
    def init_params(module):
        from fairseq.modules import MultiheadAttention
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if module.bias is not None:
                module.bias.data.zero_()
        if isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        if isinstance(module, MultiheadAttention):
            module.q_proj.weight.data.normal_(mean=0.0, std=0.02)
            module.k_proj.weight.data.normal_(mean=0.0, std=0.02)
            module.v_proj.weight.data.normal_(mean=0.0, std=0.02)
        if isinstance(module, nn.RNNBase):
            for name, param in module.named_parameters():
                if "weight" in name or "bias" in name:
                    param.data.uniform_(-0.1, 0.1)

    # 权重初始化
    model.apply(init_params)
    return model

架构相关配置

为了达成 strong baseline,请参考 Attention is all you need 中表 3 中 transformer-base 的超参数

arch_args = Namespace(
    encoder_embed_dim=256,
    encoder_ffn_embed_dim=512,
    encoder_layers=1,
    decoder_embed_dim=256,
    decoder_ffn_embed_dim=1024,
    decoder_layers=1,
    share_decoder_input_output_embed=True,
    dropout=0.3,
)

# 提示: 这些是 Transformer 的参数补丁
def add_transformer_args(args):
    args.encoder_attention_heads=4
    args.encoder_normalize_before=True

    args.decoder_attention_heads=4
    args.decoder_normalize_before=True

    args.activation_fn="relu"
    args.max_source_positions=1024
    args.max_target_positions=1024

    # Transformer 默认参数的补丁(未在上面设置的参数)
    from fairseq.models.transformer import base_architecture
    base_architecture(arch_args)

# add_transformer_args(arch_args)
if config.use_wandb:
    wandb.config.update(vars(arch_args))
model = build_model(arch_args, task)
logger.info(model)

优化

损失(Loss): Label Smoothing Regularization

  • 让模型学习生成更少集中的分布,防止过度自信
  • 有时候正确答案可能不是唯一的。因此,在计算损失时,我们为错误标签保留一些概率。
  • 避免过拟合

代码 source

class LabelSmoothedCrossEntropyCriterion(nn.Module):
    def __init__(self, smoothing, ignore_index=None, reduce=True):
        super().__init__()
        self.smoothing = smoothing
        self.ignore_index = ignore_index
        self.reduce = reduce

    def forward(self, lprobs, target):
        if target.dim() == lprobs.dim() - 1:
            target = target.unsqueeze(-1)
        # nll: Negative log likelihood 负对数似然,当目标是 one-hot 时的交叉熵。下一行代码等同于F.nll_loss
        nll_loss = -lprobs.gather(dim=-1, index=target)
        #  保留一些其他标签的概率,这样在计算交叉熵的时候相当于对所有标签的对数概率求和
        smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
        if self.ignore_index is not None:
            pad_mask = target.eq(self.ignore_index)
            nll_loss.masked_fill_(pad_mask, 0.0)
            smooth_loss.masked_fill_(pad_mask, 0.0)
        else:
            nll_loss = nll_loss.squeeze(-1)
            smooth_loss = smooth_loss.squeeze(-1)
        if self.reduce:
            nll_loss = nll_loss.sum()
            smooth_loss = smooth_loss.sum()
        # 在计算交叉熵的时候,增加其他标签的损失
        eps_i = self.smoothing / lprobs.size(-1)
        loss = (1.0 - self.smoothing) * nll_loss + eps_i * smooth_loss
        return loss

# 通常来说,0.1 已经足够好了
criterion = LabelSmoothedCrossEntropyCriterion(
    smoothing=0.1,
    ignore_index=task.target_dictionary.pad(),
)

优化器: Adam + 学习率调度

在训练 Transformer 时,平方根倒数调度(Inverse square root scheduling)对于稳定性非常重要,在后面也用于RNN。
根据以下公式更新学习率,第一阶段线性增加,然后按时间步的平方根倒数成比例衰减。
l r a t e = d model − 0.5 ⋅ min ⁡ ( s t e p _ n u m − 0.5 , s t e p _ n u m ⋅ w a r m u p _ s t e p s − 1.5 ) lrate = d_{\text{model}}^{-0.5}\cdot\min({step\_num}^{-0.5},{step\_num}\cdot{warmup\_steps}^{-1.5}) lrate=dmodel0.5min(step_num0.5,step_numwarmup_steps1.5)

def get_rate(d_model, step_num, warmup_step):
    # TODO: 将 lr 从常数修改为上面显示的公式
    lr = 0.001
    return lr
class NoamOpt:
    "Optim 包装,用于实现 rate"
    def __init__(self, model_size, factor, warmup, optimizer):
        self.optimizer = optimizer
        self._step = 0
        self.warmup = warmup
        self.factor = factor
        self.model_size = model_size
        self._rate = 0

    @property
    def param_groups(self):
        return self.optimizer.param_groups

    def multiply_grads(self, c):
        """将梯度乘以常数*c*."""
        for group in self.param_groups:
            for p in group['params']:
                if p.grad is not None:
                    p.grad.data.mul_(c)

    def step(self):
        "更新参数和 rate"
        self._step += 1
        rate = self.rate()
        for p in self.param_groups:
            p['lr'] = rate
        self._rate = rate
        self.optimizer.step()

    def rate(self, step = None):
        "实现上面的 `lrate`"
        if step is None:
            step = self._step
        return 0 if not step else self.factor * get_rate(self.model_size, step, self.warmup)

调度可视化

optimizer = NoamOpt(
    model_size=arch_args.encoder_embed_dim,
    factor=config.lr_factor,
    warmup=config.lr_warmup,
    optimizer=torch.optim.AdamW(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=0.0001))
plt.plot(np.arange(1, 100000), [optimizer.rate(i) for i in range(1, 100000)])
plt.legend([f"{optimizer.model_size}:{optimizer.warmup}"])
None

训练过程

训练

from fairseq.data import iterators
from torch.cuda.amp import GradScaler, autocast

def train_one_epoch(epoch_itr, model, task, criterion, optimizer, accum_steps=1):
    itr = epoch_itr.next_epoch_itr(shuffle=True)
    itr = iterators.GroupedIterator(itr, accum_steps) # 梯度累积:每 accum_steps 个样本更新一次

    stats = {"loss": []}
    scaler = GradScaler() # 自动混合精度(amp)

    model.train()
    progress = tqdm.tqdm(itr, desc=f"train epoch {epoch_itr.epoch}", leave=False)
    for samples in progress:
        model.zero_grad()
        accum_loss = 0
        sample_size = 0
        # 梯度累积:每 accum_steps 个样本更新一次
        for i, sample in enumerate(samples):
            if i == 1:
                # 在第一步之后清空 CUDA 缓存可以减少 OOM(out of memory)的机会
                torch.cuda.empty_cache()

            sample = utils.move_to_cuda(sample, device=device)
            target = sample["target"]
            sample_size_i = sample["ntokens"]
            sample_size += sample_size_i

            # 混合精度训练
            with autocast():
                net_output = model.forward(**sample["net_input"])
                lprobs = F.log_softmax(net_output[0], -1)
                loss = criterion(lprobs.view(-1, lprobs.size(-1)), target.view(-1))

                # 日志记录
                accum_loss += loss.item()
                # 反向传播
                scaler.scale(loss).backward()

        scaler.unscale_(optimizer)
        optimizer.multiply_grads(1 / (sample_size or 1.0)) # (sample_size or 1.0) 处理零梯度的情况
        gnorm = nn.utils.clip_grad_norm_(model.parameters(), config.clip_norm) # 梯度裁剪防止梯度爆炸

        scaler.step(optimizer)
        scaler.update()

        # 日志记录
        loss_print = accum_loss/sample_size
        stats["loss"].append(loss_print)
        progress.set_postfix(loss=loss_print)
        if config.use_wandb:
            wandb.log({
                "train/loss": loss_print,
                "train/grad_norm": gnorm.item(),
                "train/lr": optimizer.rate(),
                "train/sample_size": sample_size,
            })

    loss_print = np.mean(stats["loss"])
    logger.info(f"training loss: {loss_print:.4f}")
    return stats

验证 & 推测

为了防止过拟合,每个训练周期都需要进行验证,以验证模型在未见过的数据上的性能。

  • 该过程与训练基本相同,只是多了一个推测步骤。
  • 在验证后,我们可以保存模型的权重。

仅凭验证损失无法描述模型的实际性能

  • 基于当前模型直接生成翻译假设,然后使用参考翻译计算BLEU
  • 我们也可以手动检查假设的质量
  • 我们使用 fairseq 的序列生成器进行集束搜索以生成翻译假设。
# fairseq 的集束搜索生成器
# 给定模型和输入序列,通过集束搜索生成翻译假设
sequence_generator = task.build_generator([model], config)

def decode(toks, dictionary):
    # 将 Tensor 转换为人类可读的句子
    s = dictionary.string(
        toks.int().cpu(),
        config.post_process,
    )
    return s if s else "<unk>"

def inference_step(sample, model):
    gen_out = sequence_generator.generate([model], sample)
    srcs = []
    hyps = []
    refs = []
    for i in range(len(gen_out)):
        # 对于每个样本,收集输入、假设和参考,稍后用于计算 BLEU
        srcs.append(decode(
            utils.strip_pad(sample["net_input"]["src_tokens"][i], task.source_dictionary.pad()),
            task.source_dictionary,
        ))
        hyps.append(decode(
            gen_out[i][0]["tokens"], # 0 表示使用集束中的最佳假设
            task.target_dictionary,
        ))
        refs.append(decode(
            utils.strip_pad(sample["target"][i], task.target_dictionary.pad()),
            task.target_dictionary,
        ))
    return srcs, hyps, refs
import shutil
import sacrebleu

def validate(model, task, criterion, log_to_wandb=True):
    logger.info('begin validation')
    itr = load_data_iterator(task, "valid", 1, config.max_tokens, config.num_workers).next_epoch_itr(shuffle=False)

    stats = {"loss":[], "bleu": 0, "srcs":[], "hyps":[], "refs":[]}
    srcs = []
    hyps = []
    refs = []

    model.eval()
    progress = tqdm.tqdm(itr, desc=f"validation", leave=False)
    with torch.no_grad():
        for i, sample in enumerate(progress):
            # 验证损失
            sample = utils.move_to_cuda(sample, device=device)
            net_output = model.forward(**sample["net_input"])

            lprobs = F.log_softmax(net_output[0], -1)
            target = sample["target"]
            sample_size = sample["ntokens"]
            loss = criterion(lprobs.view(-1, lprobs.size(-1)), target.view(-1)) / sample_size
            progress.set_postfix(valid_loss=loss.item())
            stats["loss"].append(loss)

            # 做推测
            s, h, r = inference_step(sample, model)
            srcs.extend(s)
            hyps.extend(h)
            refs.extend(r)

    tok = 'zh' if task.cfg.target_lang == 'zh' else '13a'
    stats["loss"] = torch.stack(stats["loss"]).mean().item()
    stats["bleu"] = sacrebleu.corpus_bleu(hyps, [refs], tokenize=tok) # 計算BLEU score
    stats["srcs"] = srcs
    stats["hyps"] = hyps
    stats["refs"] = refs

    if config.use_wandb and log_to_wandb:
        wandb.log({
            "valid/loss": stats["loss"],
            "valid/bleu": stats["bleu"].score,
        }, commit=False)

    showid = np.random.randint(len(hyps))
    logger.info("example source: " + srcs[showid])
    logger.info("example hypothesis: " + hyps[showid])
    logger.info("example reference: " + refs[showid])

    # 显示 bleu 结果
    logger.info(f"validation loss:\t{stats['loss']:.4f}")
    logger.info(stats["bleu"].format())
    return stats

保存和加载模型权重

def validate_and_save(model, task, criterion, optimizer, epoch, save=True):
    stats = validate(model, task, criterion)
    bleu = stats['bleu']
    loss = stats['loss']
    if save:
        # 保存 epoch checkpoints
        savedir = Path(config.savedir).absolute()
        savedir.mkdir(parents=True, exist_ok=True)

        check = {
            "model": model.state_dict(),
            "stats": {"bleu": bleu.score, "loss": loss},
            "optim": {"step": optimizer._step}
        }
        torch.save(check, savedir/f"checkpoint{epoch}.pt")
        shutil.copy(savedir/f"checkpoint{epoch}.pt", savedir/f"checkpoint_last.pt")
        logger.info(f"saved epoch checkpoint: {savedir}/checkpoint{epoch}.pt")

        # 保存 epoch 样本
        with open(savedir/f"samples{epoch}.{config.source_lang}-{config.target_lang}.txt", "w") as f:
            for s, h in zip(stats["srcs"], stats["hyps"]):
                f.write(f"{s}\t{h}\n")

        # 获取最佳的验证 bleu
        if getattr(validate_and_save, "best_bleu", 0) < bleu.score:
            validate_and_save.best_bleu = bleu.score
            torch.save(check, savedir/f"checkpoint_best.pt")

        del_file = savedir / f"checkpoint{epoch - config.keep_last_epochs}.pt"
        if del_file.exists():
            del_file.unlink()

    return stats

def try_load_checkpoint(model, optimizer=None, name=None):
    name = name if name else "checkpoint_last.pt"
    checkpath = Path(config.savedir)/name
    if checkpath.exists():
        check = torch.load(checkpath)
        model.load_state_dict(check["model"])
        stats = check["stats"]
        step = "unknown"
        if optimizer != None:
            optimizer._step = step = check["optim"]["step"]
        logger.info(f"loaded checkpoint {checkpath}: step={step} loss={stats['loss']} bleu={stats['bleu']}")
    else:
        logger.info(f"no checkpoints found at {checkpath}!")

Main

训练循环

model = model.to(device=device)
criterion = criterion.to(device=device)
logger.info("task: {}".format(task.__class__.__name__))
logger.info("encoder: {}".format(model.encoder.__class__.__name__))
logger.info("decoder: {}".format(model.decoder.__class__.__name__))
logger.info("criterion: {}".format(criterion.__class__.__name__))
logger.info("optimizer: {}".format(optimizer.__class__.__name__))
logger.info(
    "num. model params: {:,} (num. trained: {:,})".format(
        sum(p.numel() for p in model.parameters()),
        sum(p.numel() for p in model.parameters() if p.requires_grad),
    )
)
logger.info(f"max tokens per batch = {config.max_tokens}, accumulate steps = {config.accum_steps}")
epoch_itr = load_data_iterator(task, "train", config.start_epoch, config.max_tokens, config.num_workers)
try_load_checkpoint(model, optimizer, name=config.resume)
while epoch_itr.next_epoch_idx <= config.max_epoch:
    # 训练一个 epoch
    train_one_epoch(epoch_itr, model, task, criterion, optimizer, config.accum_steps)
    stats = validate_and_save(model, task, criterion, optimizer, epoch=epoch_itr.epoch)
    logger.info("end of epoch {}".format(epoch_itr.epoch))
    epoch_itr = load_data_iterator(task, "train", epoch_itr.next_epoch_idx, config.max_tokens, config.num_workers)

Submission

# 对几个 checkpoints 进行平均可以产生类似于 ensemble 的效果
checkdir=config.savedir
!python ./fairseq/scripts/average_checkpoints.py \
--inputs {checkdir} \
--num-epoch-checkpoints 5 \
--output {checkdir}/avg_last_5_checkpoint.pt

确定用于生成 submission 的模型权重

# checkpoint_last.pt : 最新的 epoch
# checkpoint_best.pt : 最高的验证 BLEU
# avg_last_5_checkpoint.pt: 最近 5 次 epoch 的平均值
try_load_checkpoint(model, name="avg_last_5_checkpoint.pt")
validate(model, task, criterion, log_to_wandb=False)
None

生成预测

def generate_prediction(model, task, split="test", outfile="./prediction.txt"):
    task.load_dataset(split=split, epoch=1)
    itr = load_data_iterator(task, split, 1, config.max_tokens, config.num_workers).next_epoch_itr(shuffle=False)

    idxs = []
    hyps = []

    model.eval()
    progress = tqdm.tqdm(itr, desc=f"prediction")
    with torch.no_grad():
        for i, sample in enumerate(progress):
            # 验证损失
            sample = utils.move_to_cuda(sample, device=device)

            # 做推测
            s, h, r = inference_step(sample, model)

            hyps.extend(h)
            idxs.extend(list(sample['id']))

    # 根据预处理前的顺序进行排序
    hyps = [x for _,x in sorted(zip(idxs,hyps))]

    with open(outfile, "w") as f:
        for h in hyps:
            f.write(h+"\n")
generate_prediction(model, task)
raise

Back-translation

训练一个 backward translation 模型

  1. config 中的 source_lang 和 target_lang 进行切换
  2. 更改 config 中的 savedir(例如: “./checkpoints/transformer-back”)
  3. 训练模型

用后向模型生成人造数据

下载单语言数据

mono_dataset_name = 'mono'
mono_prefix = Path(data_dir).absolute() / mono_dataset_name
mono_prefix.mkdir(parents=True, exist_ok=True)

urls = (
    "https://github.com/figisiwirf/ml2023-hw5-dataset/releases/download/v1.0.1/ted_zh_corpus.deduped.gz",
)
file_names = (
    'ted_zh_corpus.deduped.gz',
)

for u, f in zip(urls, file_names):
    path = mono_prefix/f
    if not path.exists():
        !wget {u} -O {path}
    else:
        print(f'{f} is exist, skip downloading')
    if path.suffix == ".tgz":
        !tar -xvf {path} -C {prefix}
    elif path.suffix == ".zip":
        !unzip -o {path} -d {prefix}
    elif path.suffix == ".gz":
        !gzip -fkd {path}

TODO: 清洗语料

  1. 移除太长或者太短的句子
  2. 统一标点符号

提示: 你可以使用之前定义的 clean_s() 来执行此操作


TODO: 子词单位

使用后向模型的 spm 模型将数据标记为子词单位

提示: spm 模型位于 DATA/raw-data/[dataset]/spm[vocab_num].model


二值化

使用 fairseq 去二值化数据

binpath = Path('./DATA/data-bin', mono_dataset_name)
src_dict_file = './DATA/data-bin/ted2020/dict.en.txt'
tgt_dict_file = src_dict_file
monopref = str(mono_prefix/"mono.tok") # whatever filepath you get after applying subword tokenization
if binpath.exists():
    print(binpath, "exists, will not overwrite!")
else:
    !python -m fairseq_cli.preprocess\
        --source-lang 'zh'\
        --target-lang 'en'\
        --trainpref {monopref}\
        --destdir {binpath}\
        --srcdict {src_dict_file}\
        --tgtdict {tgt_dict_file}\
        --workers 2

TODO: 用后向模型生成人造数据

将二进制化的单语言数据添加到原始数据目录中,并将其命名为 “split_name”

例如: ./DATA/data-bin/ted2020/[split_name].zh-en.[“en”, “zh”].[“bin”, “idx”]

然后你可以使用 ‘generate_prediction(model, task, split=“split_name”)’ 来生成翻译的预测

# 将二进制化的单语言数据添加到原始数据目录中,并将其命名为 "split_name"
# 例如: ./DATA/data-bin/ted2020/\[split_name\].zh-en.\["en", "zh"\].\["bin", "idx"\]
!cp ./DATA/data-bin/mono/train.zh-en.zh.bin ./DATA/data-bin/ted2020/mono.zh-en.zh.bin
!cp ./DATA/data-bin/mono/train.zh-en.zh.idx ./DATA/data-bin/ted2020/mono.zh-en.zh.idx
!cp ./DATA/data-bin/mono/train.zh-en.en.bin ./DATA/data-bin/ted2020/mono.zh-en.en.bin
!cp ./DATA/data-bin/mono/train.zh-en.en.idx ./DATA/data-bin/ted2020/mono.zh-en.en.idx
# hint: 在 split='mono' 上做预测来创建 prediction_file
# generate_prediction( ... ,split=... ,outfile=... )

TODO: 创建新的数据集

  1. 将预测数据和单语数据结合
  2. 使用原始的 spm 模型将数据 tokenize 为子词单位
  3. 使用 fairseq 将数据二值化
# 将 prediction_file (.en) 和 mono.zh (.zh) 结合为新的数据集
#
# 提示: 用 spm 模型 tokenize prediction_file
# spm_model.encode(line, out_type=str)
# 输出: ./DATA/rawdata/mono/mono.tok.en & mono.tok.zh
#
# 提示: 使用 fairseq 再次二值化这两个文件
# binpath = Path('./DATA/data-bin/synthetic')
# src_dict_file = './DATA/data-bin/ted2020/dict.en.txt'
# tgt_dict_file = src_dict_file
# monopref = ./DATA/rawdata/mono/mono.tok # or whatever path after applying subword tokenization, w/o the suffix (.zh/.en)
# if binpath.exists():
#     print(binpath, "exists, will not overwrite!")
# else:
#     !python -m fairseq_cli.preprocess\
#         --source-lang 'zh'\
#         --target-lang 'en'\
#         --trainpref {monopref}\
#         --destdir {binpath}\
#         --srcdict {src_dict_file}\
#         --tgtdict {tgt_dict_file}\
#         --workers 2
# 根据上面准备的所有文件创建一个新的数据集
!cp -r ./DATA/data-bin/ted2020/ ./DATA/data-bin/ted2020_with_mono/

!cp ./DATA/data-bin/synthetic/train.zh-en.zh.bin ./DATA/data-bin/ted2020_with_mono/train1.en-zh.zh.bin
!cp ./DATA/data-bin/synthetic/train.zh-en.zh.idx ./DATA/data-bin/ted2020_with_mono/train1.en-zh.zh.idx
!cp ./DATA/data-bin/synthetic/train.zh-en.en.bin ./DATA/data-bin/ted2020_with_mono/train1.en-zh.en.bin
!cp ./DATA/data-bin/synthetic/train.zh-en.en.idx ./DATA/data-bin/ted2020_with_mono/train1.en-zh.en.idx

创建新数据集 “ted2020_with_mono”

  1. 修改 config 中的 datadir (“./DATA/data-bin/ted2020_with_mono”)
  2. config 中的 source_lang 和 target_lang 进行切换 (“en”, “zh”)
  3. 更改 config 中的 savedir (例如: “./checkpoints/transformer-bt”)
  4. 训练模型

References

  1. Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., … & Auli, M. (2019, June). fairseq: A Fast, Extensible Toolkit for Sequence Modeling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations) (pp. 48-53).
  2. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … & Polosukhin, I. (2017, December). Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 6000-6010).
  3. Reimers, N., & Gurevych, I. (2020, November). Making Monolingual Sentence Embeddings Multilingual Using Knowledge Distillation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 4512-4525).
  4. Tiedemann, J. (2012, May). Parallel Data, Tools and Interfaces in OPUS. In Lrec (Vol. 2012, pp. 2214-2218).
  5. Kudo, T., & Richardson, J. (2018, November). SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations (pp. 66-71).
  6. Sennrich, R., Haddow, B., & Birch, A. (2016, August). Improving Neural Machine Translation Models with Monolingual Data. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 86-96).
  7. Edunov, S., Ott, M., Auli, M., & Grangier, D. (2018). Understanding Back-Translation at Scale. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (pp. 489-500).
  8. https://github.com/ajinkyakulkarni14/TED-Multilingual-Parallel-Corpus
  9. https://ithelp.ithome.com.tw/articles/10233122
  10. https://nlp.seas.harvard.edu/2018/04/03/attention.html
  11. https://colab.research.google.com/github/ga642381/ML2021-Spring/blob/main/HW05/HW05.ipynb

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1167794.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

为什么CDN要部署全球节点 有什么好处

当今互联网时代&#xff0c;CDN&#xff08;内容分发网络&#xff09;已经成为网络加速的重要工具。CDN通过分布式节点在全球范围内分发内容&#xff0c;从而提高网站和应用的性能&#xff0c;减少延迟&#xff0c;降低带宽成本&#xff0c;增强用户体验。本文将探讨CDN加速的好…

浪涌保护器,漏电保护器和空气开关的区别

地凯科技浪涌保护器 浪涌保护器&#xff0c;也叫防雷器或过电压保护器&#xff0c;是一种为各种电子设备、仪器仪表、通讯线路提供安全防护的电子装置。它主要用于限制过电压和泄放浪涌电流。 浪涌是指瞬间超出稳定值的峰值&#xff0c;包括浪涌电压和浪涌电流。供电系统的浪…

进击的代码之路:如何培养解决问题的架构思维?

目录 一、拓宽知识面 二、学习设计原则与模式 三、培养系统思维 四、注重可扩展性 五、多角度思考 六、实践经验总结 七、团队协作与交流 培养解决问题的架构思维是每位开发者在成长过程中都需要掌握的重要能力之一。架构思维不仅可以帮助我们更好地理解和解决复杂的技…

子串简写(第14届蓝桥杯b组题目)

程序猿圈子里正在流行一种很新的简写方法&#xff1a; 对于一个字符串&#xff0c;只保留首尾字符&#xff0c;将首尾字符之间的所有字符用这部分的长度代替。 例如 internationalization 简写成 i18n&#xff0c;Kubernetes 简写成 K8s&#xff0c;Lanqiao 简写成 L5o 等。 …

【实用】得到三个动态时间点作为分界点

因为周报需要对比上周,所以现在有一个需求&#xff0c;动态生成上周周一的时间点&#xff0c;类似 ‘2023-10-23 00:00:00’ 并将值赋予给time2变量,将time2 减去7天&#xff0c;得到的时间点赋值给time1&#xff0c;将time2 减去7天&#xff0c;得到的时间点赋值给time3&#…

java学习路线24版

前言 作为大四老学长的秃狼&#xff0c;近日收到大量兄弟们的私信&#xff0c;希望我能出一期java学习路线的视频&#xff0c;很多小伙伴也是大一的新生&#xff0c;都想和我一样做最美逆行者。还有一些非科班准备转码的小伙伴&#xff0c;不想走培训班那条路线想要通过自学找…

利用 docker 实现JMeter分布式压测

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…

Linux中centos获得root权限

1.在centos中右键打开终端 2.输入su root会显示密码&#xff0c;直接输入自己的密码就可以&#xff0c;他不会显示输入的内容但是密码已经输入进去了&#xff0c;输入密码后点击回车。 3.输入后前面的用户名变成root如图片里画的三条横线中的内容所示&#xff0c;$符号变成#则…

JavaScript设计程序结构

JavaScript提供了20多个命令&#xff0c;分别执行不同的操作。从用途分析&#xff0c;这些命令可以分为&#xff1a;声明语句、分支控制、循环控制、流程控制、异常处理和其他语句。本贴将重点讲解程序结构设计命令&#xff0c;包括if条件判断语句、switch多分支语句、for循环语…

校企联动,促进就业丨湖北三峡职院到访唯众考察交流

11月2日&#xff0c;湖北三峡职院技术学院电子信息学院学工办主任林雯&#xff0c;教师何峡峰、江晶晶、张博阳一行到访武汉唯众智创科技有限公司进行考察交流。唯众创始人辜渝傧及相关人员等进行了热情接待。此次活动旨在促进校企合作&#xff0c;加强教育与实践的结合&#x…

vue二维码生成插件qrcodejs2-fix、html生成图片插件html2canvas、自定义打印内容插件print-js的使用及问题总结

一、二维码生成插件qrcodejs2-fix 1.安装命令 npm i qrcodejs2-fix --save2.页面使用 import { nextTick } from vue; import QRCode from qrcodejs2-fix; nextTick(() > {let codeView document.querySelector("#codeView");codeView.innerHTML ""…

antd的Table组件使用rowSelection属性实现多选时遇到的bug

前言 前端样式框架采用AntDesign时&#xff0c;经常会使用到Table组件&#xff0c;如果要有实现多选或选择的需求时往往就会用到rowSelection属性&#xff0c;效果如下 rowSelection属性属性值如下 问题 文档中并没有说明选择时以数据中的哪个属性为准&#xff0c;看官方案例…

2023年上半年网络工程师试题

2023年上半年网络工程师试题 【试题一】 阅读以下说明&#xff0c;回答问题1至问题4将解答填入答题纸对应的解答栏内。 【说明】 某企业办公楼网络拓扑如图1-1所示。该网络中交换机Switch1-Switch4均是二层设备&#xff0c;分布在办公楼的各层&#xff0c;上联采用千兆光纤…

谭巍主任重点科普HPV病毒最怕的消毒液

HPV病毒&#xff0c;也称为人类乳头瘤病毒&#xff0c;是一种常见的性传播病毒。它感染人体皮肤和黏膜&#xff0c;导致各种疾病&#xff0c;包括尖锐湿疣、宫颈癌等。为了有效控制HPV病毒的传播&#xff0c;劲松中西医医院皮肤性病科主任谭巍认为了解消杀HPV病毒的消毒液是非常…

漏电继电器LLJ-100FG 电压0.38KV CT45 AC220V

LLJ-F(S)系列漏电继电器 系列型号&#xff1a; LLJ-10F(S)漏电继电器LLJ-15F(S)漏电继电器LLJ-16F(S)漏电继电器 LLJ-25F(S)漏电继电器LLJ-30F(S)漏电继电器LLJ-32F(S)漏电继电器 LLJ-60F(S)漏电继电器LLJ-63F(S)漏电继电器LLJ-80F(S)漏电继电器 LLJ-100F(S)漏电继电器LLJ-120…

火影同人轻小说,享受老练文笔和扣人心弦的情节,不容错过

火影老迷们&#xff0c;你们好&#xff01;今天小郑要向你们推荐三本绝对不能错过的火影同人小说。 《火影之活久见》 这本书的主角是一个老大叔&#xff0c;他得到了一种系统&#xff0c;可以让他越活越年轻。他经历了千手柱间和宇智波斑争斗的年代&#xff0c;一直活到博人时…

适用于汽车应用的QCA6678AQ、QCA6698AQ、QCA6595AU、QCA6574AU片上系统(SoC)

1、QCA6678AQ Wi-Fi 6e单MAC 802.11ax MIMO 2x2蓝牙5.3&#xff0c;适用于汽车应用。 QCA6678AQ 802.11AX MIMO单MAC解决方案支持Wi-Fi 6e&#xff0c;可将连接扩展到新的、不拥挤的6GHz频谱。得益于4K QAM和160 MHz带宽等先进功能&#xff0c;它能够以超过2Gbps的数据传输速度…

Dev-C调试的基本方法2-2

3.3 跳出函数 在图6所示的状态下&#xff0c;点击单步调试&#xff08;F7&#xff09;会继续调试下一行&#xff0c;而如果想结束在函数中的调试&#xff0c;则点击图4③所示的跳出函数&#xff0c;或CtrlF8按键跳出f()函数&#xff0c;程序将会停在图5所示的第11行处。 3.4 …

JavaEE的渊源

JavaEE的渊源 1. JavaEE的起源2. JavaEE与Spring的诞生3. JavaEE发展历程&#xff08;2003-2007&#xff09;4. JavaEE发展历程&#xff08;2009-至今&#xff09;5. Java的Spec数目与网络结构 1. JavaEE的起源 我们首先来讲一下JavaEE的起源 ,为什么要来讲起源 &#xff1f; …

企业财务数字化转型的机遇有哪些?_光点科技

随着数字技术的飞速发展&#xff0c;企业正面临着一个前所未有的转型机会。尤其在财务领域&#xff0c;数字化不仅仅是一种技术进步&#xff0c;更是一个全面提升企业竞争力的战略选择。那么&#xff0c;企业财务数字化转型所带来的机遇有哪些&#xff1f; 提高效率与生产力 数…