基于GEE云平台一种快速修复Landsat影像条带色差的方法

news2025/1/21 22:09:27

这是之前关于去除遥感影像条带的另一篇文章,因为出版商推迟了一年发布,所以让大家久等了。这篇文章的主要目的是对Landsat系列卫星因为条带拼接或者镶嵌产生的条带来进行的一种在线修复方式。

原文连接

一种快速修复Landsat影像条带色差的方法

题目:

一种快速修复Landsat影像条带色差的方法

A Rapid Method for Stripe Chromatic Aberration Correction in Landsat Image

摘要

Landsat卫星影像已经成为世界范围内长时间序列生态监测研究中最广泛使用的数据源。在大中尺度区域的遥感应用研究中,因季节、光照、气候等条件以及卫星重返周期和传感器的不同,多景遥感影像拼接、镶嵌后会存在斑块效应和色调不均匀现象。在遥感云计算技术高速发展的今天,探索快速且高效地基于云平台的Landsat色差条带修复方法具有重要意义。提出了一种在Google Earth Engine(GEE)云平台上实现的基于随机森林算法的直方图影像均质化方法,将1986年—2020年山西省Landsat Top of Atmosphere(TOA)和Surface Reflectance(SR)(Landsat 5 TM/7 ETM+/8 OLI)反演后的归一化植被指数影像NDVI作为研究数据,以MOD13Q1(250 m分辨率)、MOD13A1(500 m分辨率)和MOD13A2(1 km分辨率)MODIS数据集作为2000年后的验证数据,分别对比影像修复前后的1986年—2020年山西省NDVI影像。研究结果表明:(1)在35年的逐年影像分析中有20年的影像存在条带色差问题。以1994年为例,修复后的Landsat TOA和Landsat SR影像与修复前相比,影像修复区的NDVI平均值分别增加了32.6%和29.03%,剖面分析显示拟合度分别增加了0.162 3和0.118 0;(2)1986年—2020年一元线性回归趋势性分析结果表明,修复后影像的拟合度更高,长时序分析后逐年影像的波动幅度更小。其中,Landsat TOA和SR影像修复后的斜率分别下降了0.006 2和0.006 7,R2分别提高了0.024 8和0.008 4;(3)对Landsat和MODIS影像进行Pearson相关性分析发现,修复后的Landsat SR和TOA图像的相关系数平均提高了0.049和0.061(p<0.05),其中,修复后的Landsat SR和TOA影像与MOD13Q1、MOD13A1、MOD13A2影像相关系数分别提高了0.050、0.047、0.049和0.066、0.060和0.059;(4)2000年—2020年Landsat和MODIS影像的时序分析结果显示,修复后的Landsat影像整体趋势与MODIS影像更趋近,修复后的Landsat TOA和SR影像的拟合度分别提升了0.058 6和0.031 9。所提出的基于GEE云平台随机森林算法的快速影像修复方法,实现了对长时间序列遥感影像NDVI反演结果的精确评估,应用本方法可快速、高效地解决影像镶嵌所造成的色差斑块和条带效应。

关键词

生态监测;Google Earth Engine;影像拼接;影像修复;随机森林;直方图匹配

Abstract

Landsat satellite images have become the most widely used data source in large-scale ecological monitoring studies worldwide. In remote sensing application studies of large and medium scale areas, due to seasonal, lighting and climatic conditions and different satellite re-entry cycles and sensors, patchy effects and chromatic unevenness may exist after stitching the mosaic of multi-scene remote sensing images. With the rapid development of remote sensing cloud computing technology, exploring a fast and efficient method to repair Landsat chromatic stripes based on cloud platform is important. In this paper, we propose a histogram image homogenization method based on a random forest algorithm implemented on the Google Earth Engine (GEE) cloud platform, which homogenizes the Landsat Top of Atmosphere (TOA) and Surface Reflectance (SR) of Shanxi Province from 1986 to 2020 (Landsat 5 TM/7 ETM+/8 OLI) normalized vegetation index (NDVI) images after inversion were used as the study data, and MOD13Q1 (250 m resolution), MOD13A1 (500 m resolution) and MOD13A2 (1 km resolution) MODIS datasets were used as the validation data after 2000. The NDVI images of Shanxi Province from 1986 to 2020 before and after image restoration were compared separately, and the results of the study showed that (1) 20 years of the 35-year image analysis had strip color difference problems, and in 1994, for example, the restored Landsat TOA and Landsat SR images compared with those before restoration, the mean NDVI values of the restored areas increased by 32.6% and 29.03% respectively, and the profile analysis showed that the fit increased by 0.162 3 and 0.118 0 respectively; (2) The results of the trend analysis of the 1986—2020 one-dimensional linear regression showed that the fit of the restored images was high and the fluctuation of the year-by-year images was smaller after the long time series analysis. Among them, the slopes of the restored Landsat TOA and SR images decreased by 0.006 2 and 0.006 7, and theR2 improved by 0.024 8 and 0.008 4 respectively; (3) Pearson correlation analysis of Landsat and MODIS images found that the correlation coefficients of the restored Landsat SR and TOA images improved by an average of 0.049 and 0.061 (p<0.05), where the correlation coefficients of restored Landsat SR and TOA images and MOD13Q1, MOD13A1, and MOD13A2 images increased by 0.050, 0.047, 0.049, 0.066, 0.060, and 0.059, respectively; (4) 2000—2020 Landsat and MODIS image time series analysis results show that the overall trend of the restored Landsat images is more similar to MODIS images, and the fit of the restored Landsat TOA and SR images is improved by 0.058 6 and 0.031 9, respectively. The proposed GEE cloud platform-based stochastic The proposed fast image restoration method based on the GEE cloud platform random forest algorithm achieves the accurate evaluation of NDVI inversion results of long time series remote sensing images, and the application of this method can quickly and efficiently solve the chromatic patch and banding effects caused by image mosaic. 

流程图

Landsat 和MODIS系列影像数据获取均来自于GEE云平台公共数据集。图2为技术流程,主要分为数据预处理、影像匹配和验证分析三个部分。数据预处理过程主要包括:上传山西省矢量边界;逐年影像时间筛选(每年1月1日至12月31日)和波段选择("Red"、"NIR"和"pixel_qa");"pixel_qa"波段去云和NDVI波段计算;最后,按照qualityMosaic函数进行影像拼接和镶嵌。影像匹配部分,首先,通过目视解译的方法,判断逐年NDVI影像是否需要进行影像匀光处理,将需影像修复的部分作为目标影像,参考影像为目标影像相邻的区域,目的是让目标影像获取和相邻影像的一致的色调;其次,分别统计参考影像和目标影像 NDVI的 DN (digital number)值,进而计算概率密度函数和累积分布函数,按照随机森林方法进行直方图匹配,从而获得匀光处理目标影像。验证分析分为三个部分:第一,山西省逐年NDVI影像修复前后对比;第二,1986年-2020年匀光处理前后NDVI影像的时序分析;第三,匀光处理后的NDVI影像和2000年后MODIS影像对比分析。
山西省边界远超出单景影像的覆盖范围,因此在影像拼接中将由多幅不同轨迹的影像组成,目标影像选取的原则是按照小于研究区总面积的50%进行修复,以最大程度的减小匀光处理后影像对原始数据的影响。经统计,所有年份的目标影像面积占比均小于总研究区的 30%,参考影像色差所选取的区域均为目标影像的衔接条带。

主要实验结果

1994 年影像修复前后 NDVI 剖面的对比分析如图 4 所示,修复后的NDVI影像能平稳的反映该区域的NDVI值。修复前Landsat TOA影像的拟合度为0.008 4,修复后为0.170 7;修复前的Landsat SR影像的拟合仅有0.002 4,修复后为0.1204,结果表明,修复后的影像拟合度更高,表明修复后的影像比修复前更加符合影像的整体过度。 

         为了验证影像修复前后对于山西省 34 年间 NDVI的影响,分别对影像修复前后的NDVI值进行时序分析,如图5所示。元线性回归的趋势性分析结果表明:Landsat TOA影像修复后的NDVI值斜率为0.0062小于影像修复前,拟合度R2为0.810 6高于修复前;Landsat SR影像修复前的NDVI 斜率为 0.007 1,而修复后的斜率为 0.006 7,且拟合优度R2值0.8363大于修复前的0.829 3,表明影像修复后的拟合度更高。整体上看Landsat影像修复后的结果在长时间序列的变化波动性更小,趋势更加平滑。修复后的Lansat SR影像比Laodsat TOA影像提升幅度更明显。

多源影像对比分析


为了验证影像修复后的准确性,将2000年后修复的Landsat图像分别与MODIS系列数据(250 m、500 m 和1km)进行相关性分析。结果显示,2000 年、2003年、2005 年、2011 年和 2017 年的影像都有明显改善。图 6 和图 7 分别显示了 2003 年影像修复前后的 Landsat SR 和 TOA影像与 MODIS(250 m、500 m 和 1 km)影像。直方图方法修复后的Landsat影像能更好地反映色彩平衡,整体视觉效果更加。

结论

目前,在影像修复过程中,现有的研究多是在研究区的影像镶嵌和NDVI计算之前完成,这大大限制了影像的处理速度。本工作针对归一化植被指数 NDVI影像拼接后存在的影像带状斑块效应和色彩不均匀问题,以山西省作为研究区,利用GEE平台调用随机森林函数提出一种基于云端快速进行直方图影像匀光处理的方法,极大的提高了影像修复的效率。
基于同源影像的直方图匹配能最大程度地保留当期原始影像的DN值和色彩亮度,且在长时序研究中使当期影像的NDVI反演结果更加准确,经过该方法处理后影像的色彩致性较好,同时无需考虑研究区的地理差异和空间异质性。
此外,通过对比1986年—2020年逐年影像修复前后的结果,经过本方法修复后的影像在长时间序列的植被监测过程中能更精确、可靠的得出影像的修复结果,有效减少NDVI值在长时间序列的突变,提高长时间序列分析的准确性和稳定性。本方法能有效改善影像条带色差较大的区域,但对于影像条带边界不明显的区域识别仍需提升,后续研究的重点将围绕影像色差边界的自动识别和修复展开。

影像修复APP

这个影像修复的APP因为中文期刊的缘故,不让提供连接,所以这里给大家补上,大家可以去尝试修复你所需要的区域。

Landsat 5 ndvi影像修复

引用本文:   

闫星光,李 晶,闫萧萧,马天跃,苏怡婷,邵嘉豪,张 瑞. 一种快速修复Landsat影像条带色差的方法[J]. 光谱学与光谱分析, 2023, 43(11): 3483-3491.
YAN Xing-guang, LI Jing, YAN Xiao-xiao, MA Tian-yue, SU Yi-ting, SHAO Jia-hao, ZHANG Rui. A Rapid Method for Stripe Chromatic Aberration Correction in Landsat Images. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3483-3491.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1165249.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

app开发之后需要做什么

在完成app的开发之后&#xff0c;还有一系列的工作需要进行&#xff0c;以确保app的顺利上线和用户的良好体验。下面将从原理和详细介绍两个方面来介绍app开发之后需要做的工作。 一、原理介绍 1. 测试与调试&#xff1a;在app开发完成后&#xff0c;需要进行全面的测试与调试…

防范欺诈GPT

去年&#xff0c;ChatGPT的发布让全世界都感到惊讶和震惊。 突然间出现了一个平台&#xff0c;它比之前的任何其他技术都更深入地了解互联网。人工智能可以被训练成像阿姆一样说唱&#xff0c;以世界著名诗人的风格写作&#xff0c;并精确地翻译内容&#xff0c;以至于它似乎能…

初识Vue 解决vue在启动时生成的提示

让我为大家简单介绍一下吧&#xff01; Vue是一套用于构建用户界面的渐进式javaScript框架 当我们引入vue.js后 <script src"../js/vue.js"></script>我们发现&#xff0c;当我们打开网页时&#xff0c;控制台会出现以下内容 那我们该怎么解决呢&…

思科网络基础

目录 一、特殊的ip地址 1.一些基本概念 2.私有地址 3.子网划分 4.VLSM&#xff08;可变长子网掩码&#xff09; 5.CIDR&#xff08;无类域间路由-超网&#xff09; 二、IP头和一些基本概念 1.ip头 2.mtu 3.免费arp 一、特殊的ip地址 1.一些基本概念 网络位不变&…

卡尔曼家族从零解剖-(04)贝叶斯滤波→细节讨论,逻辑梳理

讲解关于slam一系列文章汇总链接:史上最全slam从零开始&#xff0c;针对于本栏目讲解的 卡尔曼家族从零解剖 链接 :卡尔曼家族从零解剖-(00)目录最新无死角讲解&#xff1a;https://blog.csdn.net/weixin_43013761/article/details/133846882 文末正下方中心提供了本人 联系…

玩转AIGC:如何选择最佳的Prompt提示词?

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

Spring、SpringMVC、Mybatis

一.Spring基础 1.Spring 框架是什么 Spring 是一款开源的轻量级 Java 开发框架&#xff0c;我们一般说 Spring 框架指的都是 Spring Framework&#xff0c;它是很多模块的集合&#xff0c;例如&#xff0c;Spring-core、Spring-JDBC、Spring-MVC 等&#xff0c;使用这些模块可…

Vite 的基本原理,和 webpack 在开发阶段的比较

目录 1&#xff0c;webpack 的流程2&#xff0c;Vite 的流程简单编译 3&#xff0c;总结 主要对比开发阶段。 1&#xff0c;webpack 的流程 开发阶段大致流程&#xff1a;指定一个入口文件&#xff0c;对相关的模块&#xff08;js css img 等&#xff09;先进行打包&#xff0…

【MySql】11- 实践篇(九)

文章目录 1. 大查询是否会把数据库内存打爆?1.1 全表扫描对 server 层的影响1.2 全表扫描对 InnoDB 的影响 2. 可不可以使用join?2.1 Index Nested-Loop Join2.2 Simple Nested-Loop Join2.3 Block Nested-Loop Join 3. join语句怎么优化?3.1 Multi-Range Read 优化3.2 Batc…

安装Oracle 11g Error in invoking target报错

在redhat7.5上安装Oracle 11g&#xff0c;安装过程中到86%时出现Error in invoking target报错 原因是由于操作系统版本过高&#xff0c;导致lib链接报错 [oracleemrtest ~]$ cd O R A C L E H O M E / s y s m a n / l i b / [ o r a c l e e m r t e s t l i b ] ORACLE…

没有PDF密码,如何解密文件?

PDF文件有两种密码&#xff0c;一个打开密码、一个限制编辑密码&#xff0c;因为PDF文件设置了密码&#xff0c;那么打开、编辑PDF文件就会受到限制。想要解密&#xff0c;我们需要输入正确的密码&#xff0c;但是有时候我们可能会出现忘记密码的情况&#xff0c;或者网上下载P…

canvas制作电子白板签名功能

Canvas是html5主要的画图工具&#xff0c;用户可以利用js在里面构思自己的创意&#xff0c;页面上很多手写签名是通过这个来完成的&#xff0c;让我们来用一个简单的例子作为抛砖引玉。 效果图 源代码 <html> <head> <meta charset"utf-8"> &l…

【脚本工具】视频抽帧、添加srt字幕朗读、添加背景音频

1.文章目录 看完本文章&#xff0c;你将能学会一下内容&#xff1a; 批量视频抽帧&#xff1b;添加srt字幕&#xff1b;添加srt配音&#xff1b;添加背景音乐&#xff1b;多视频片段合成一个新视频&#xff1b; 效果&#xff1a; 2.安装依赖 首先安装视频处理库opencv-pyth…

ERR invalid password

E:\Document_Redis_Windows\redis-2.4.5-win32-win64\64bit redis.conf

前端实现调用打印机和小票打印(TSPL )功能

Ⅰ- 壹 - 使用需求 前端 的方式 点击这个按钮&#xff0c;直接让打印机打印我想要的东西 Ⅱ - 贰 - 小票打印 目前比较好的方式就是直接用 TSPL 标签打印指令集, 基础环境就不多说了,这个功能的实现就是利用usb发送指令,现在缺少个来让我们能够和usb沟通的工具,下面这就是推…

代码随想录 Day35 动态规划04 01背包问题和完全背包问题 LeetCode T416 分割等和子集

背包问题 说到背包问题大家都会想到使用动规的方式来求解,那么为什么用动规呢,dp数组代表什么呢?初始化是什么,遍历方式又是什么,这篇文章笔者将详细讲解背包问题的经典例题0-1背包问题和完全背包问题的解题方式,希望能帮助到大家 1.暴力方式 有人一提到背包问题就只会使用动态…

C++之队列queue

1.知识百科 队列是一种特殊的线性表&#xff0c;特殊之处在于它只允许在表的前端&#xff08;front&#xff09;进行删除操作&#xff0c;而在表的后端&#xff08;rear&#xff09;进行插入操作&#xff0c;和栈一样&#xff0c;队列是一种操作受限制的线性表。进行插入操作的…

Idea - Apifox Helper 插件的安装、配置令牌、导出

第一步&#xff1a;先安装插件&#xff08;其他EASY API 、Api docx同理&#xff09; 等待安装完毕 第二步&#xff1a; 导出你想导出的API 提示我们没有找到配置文件&#xff0c;需要到设置里面设置Personal Access Token 第三步&#xff1a;到设置里面设置Personal Access T…

AI:50-基于深度学习的柑橘类水果分类

🚀 本文选自专栏:AI领域专栏 从基础到实践,深入了解算法、案例和最新趋势。无论你是初学者还是经验丰富的数据科学家,通过案例和项目实践,掌握核心概念和实用技能。每篇案例都包含代码实例,详细讲解供大家学习。 📌📌📌本专栏包含以下学习方向: 机器学习、深度学…

城市内涝解决方案:实时监测,提前预警,让城市更安全

城市内涝积水问题是指城市地区在短时间内遭遇强降雨后&#xff0c;地面积水过多&#xff0c;导致城市交通堵塞、居民生活不便、财产损失等问题。近年来&#xff0c;随着全球气候变化和城市化进程的加速&#xff0c;城市内涝积水问题越来越突出&#xff0c;成为城市发展中的一大…