diffusers-Load pipelines,models,and schedulers

news2024/11/27 7:36:04

https://huggingface.co/docs/diffusers/using-diffusers/loadingicon-default.png?t=N7T8https://huggingface.co/docs/diffusers/using-diffusers/loading

有一种简便的方法用于推理是至关重要的。扩散系统通常由多个组件组成,如parameterized model、tokenizers和schedulers,它们以复杂的方式进行交互。这就是为什么我们设计了DiffusionPipeline,将整个扩散系统的复杂性包装成易于使用的API,同时保持足够的灵活性,以适应其他用例,例如将每个组件单独加载作为构建块来组装自己的扩散系统。

1.Diffusion Pipeline

DiffusionPipeline是扩散模型最简单最通用的方法。

from diffusers import DiffusionPipeline

repo_id = "runwayml/stable-diffusion-v1-5"
pipe = DiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)

也可以使用特定的pipeline

from diffusers import StableDiffusionPipeline

repo_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)

Community pipelines是原始实现不同于DiffusionPipeline,例如StableDiffusionControlNetPipeline.

1.1 local pipeline

from diffusers import DiffusionPipeline

repo_id = "./stable-diffusion-v1-5" # local path
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)

from_pretrained()方法在检测到本地路径时不会下载。

1.2 swap components in a pipeline

可以使用另一个兼容的组件来自定义任何流程的默认组件。定制非常重要,因为:

  1. 更改调度器对于探索生成速度和质量之间的权衡是重要的。
  2. 模型的不同组件通常是独立训练的,您可以用性能更好的组件替换掉现有组件。
  3. 在微调过程中,通常只有一些组件(如UNet或文本编码器)进行训练。
from diffusers import DiffusionPipeline

repo_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)
stable_diffusion.scheduler.compatibles
from diffusers import DiffusionPipeline, EulerDiscreteScheduler, DPMSolverMultistepScheduler

repo_id = "runwayml/stable-diffusion-v1-5"
scheduler = EulerDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, scheduler=scheduler, use_safetensors=True)

可以将PNDMScheduler更换为EulerDiscreteScheduler,在回传到DiffusionPipeline中。

1.3 safety checker

safety checker可以根据已知的NSFW内容检查生成的输出, 

from diffusers import DiffusionPipeline

repo_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, safety_checker=None, use_safetensors=True)

1.4 reuse components across pipelines

可以在多个pipeline中可以重复使用相同的组件,以避免将权重加载到RAM中2次

from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline

model_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion_txt2img = StableDiffusionPipeline.from_pretrained(model_id, use_safetensors=True)

components = stable_diffusion_txt2img.components

可以将components传递到另一个pipeline中,无需将权重重新加载到RAM中:

stable_diffusion_img2img = StableDiffusionImg2ImgPipeline(**components)

下面的方式更加灵活:

from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline

model_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion_txt2img = StableDiffusionPipeline.from_pretrained(model_id, use_safetensors=True)
stable_diffusion_img2img = StableDiffusionImg2ImgPipeline(
    vae=stable_diffusion_txt2img.vae,
    text_encoder=stable_diffusion_txt2img.text_encoder,
    tokenizer=stable_diffusion_txt2img.tokenizer,
    unet=stable_diffusion_txt2img.unet,
    scheduler=stable_diffusion_txt2img.scheduler,
    safety_checker=None,
    feature_extractor=None,
    requires_safety_checker=False,
)

1.5 checkpoint variants

以torch.float16保存,节省一半的内存,但是无法训练,EMA不用于推理,用于微调模型。

2. models

from diffusers import UNet2DConditionModel

repo_id = "runwayml/stable-diffusion-v1-5"
model = UNet2DConditionModel.from_pretrained(repo_id, subfolder="unet", use_safetensors=True)

所有的权重都存储在一个safetensors中, 可以用.from_single_file()来加载模型。safetensors安全且加载速度快。

2.1 load different stable diffusion formats

.ckpt也可以用from_single_file(),但最好转成hf格式,可以使用diffusers官方提供的服务转:https://huggingface.co/spaces/diffusers/sd-to-diffusers

也可以使用脚本转:https://github.com/huggingface/diffusers/blob/main/scripts/convert_original_stable_diffusion_to_diffusers.py

python ../diffusers/scripts/convert_original_stable_diffusion_to_diffusers.py --checkpoint_path temporalnetv3.ckpt --original_config_file cldm_v15.yaml --dump_path ./ --controlnet

 A1111 Lora文件,diffusers可以使用load_lora_weights()加载lora模型:

from diffusers import DiffusionPipeline, UniPCMultistepScheduler
import torch

pipeline = DiffusionPipeline.from_pretrained(
    "andite/anything-v4.0", torch_dtype=torch.float16, safety_checker=None
).to("cuda")
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)

# uncomment to download the safetensor weights
#!wget https://civitai.com/api/download/models/19998 -O howls_moving_castle.safetensors

pipeline.load_lora_weights(".", weight_name="howls_moving_castle.safetensors")

prompt = "masterpiece, illustration, ultra-detailed, cityscape, san francisco, golden gate bridge, california, bay area, in the snow, beautiful detailed starry sky"
negative_prompt = "lowres, cropped, worst quality, low quality, normal quality, artifacts, signature, watermark, username, blurry, more than one bridge, bad architecture"

images = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    width=512,
    height=512,
    num_inference_steps=25,
    num_images_per_prompt=4,
    generator=torch.manual_seed(0),
).images

from diffusers.utils import make_image_grid

make_image_grid(images, 2, 2)

3.scheduler

scheduler没有参数化或训练;由配置文件定义。加载scheduler不会消耗大的内存,并且相同的配置文件可以用于各种不同的scheduler,比如下面的scheduler均可与StableDiffusionPipline兼容。

Diffusion流程本质上是由扩散模型和scheduler组成的集合,它们在一定程度上彼此独立。这意味着可以替换流程的某些部分,其中最好的例子就是scheduler。扩散模型通常只定义从噪声到较少噪声样本的前向传递过程,而调度器定义了整个去噪过程,包括:

去噪步骤是多少?随机的还是确定性的?用什么算法找到去噪样本? 调度器可以非常复杂,并且经常在去噪速度和去噪质量之间进行权衡。

from diffusers import StableDiffusionPipeline
from diffusers import (
    DDPMScheduler,
    DDIMScheduler,
    PNDMScheduler,
    LMSDiscreteScheduler,
    EulerDiscreteScheduler,
    EulerAncestralDiscreteScheduler,
    DPMSolverMultistepScheduler,
)

repo_id = "runwayml/stable-diffusion-v1-5"

ddpm = DDPMScheduler.from_pretrained(repo_id, subfolder="scheduler")
ddim = DDIMScheduler.from_pretrained(repo_id, subfolder="scheduler")
pndm = PNDMScheduler.from_pretrained(repo_id, subfolder="scheduler")
lms = LMSDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
euler = EulerDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
dpm = DPMSolverMultistepScheduler.from_pretrained(repo_id, subfolder="scheduler")

# replace `dpm` with any of `ddpm`, `ddim`, `pndm`, `lms`, `euler_anc`, `euler`
pipeline = StableDiffusionPipeline.from_pretrained(repo_id, scheduler=dpm, use_safetensors=True)

4.DiffusionPipline explained

作为一个类方法,DiffusionPipeline.from_pretrained()做两件事,1.下载推理所需的权重并缓存,一般存在在.cache文件中,2.将缓存文件中的model_index.json进行实例化。

feature_extractor--CLIPFeatureExtractor(transformers);scheduler--PNDMScheduler;text_encoder--CLIPTextModel(transformers);tokenizer--CLIPTokenizer(transformers);unet--UNet2DConditionModel;vae--AutoencoderKL

{
  "_class_name": "StableDiffusionPipeline",
  "_diffusers_version": "0.6.0",
  "feature_extractor": [
    "transformers",
    "CLIPImageProcessor"
  ],
  "safety_checker": [
    "stable_diffusion",
    "StableDiffusionSafetyChecker"
  ],
  "scheduler": [
    "diffusers",
    "PNDMScheduler"
  ],
  "text_encoder": [
    "transformers",
    "CLIPTextModel"
  ],
  "tokenizer": [
    "transformers",
    "CLIPTokenizer"
  ],
  "unet": [
    "diffusers",
    "UNet2DConditionModel"
  ],
  "vae": [
    "diffusers",
    "AutoencoderKL"
  ]
}

下面是runway/stable-diffusion-v1-5的文件夹结构:

.
├── feature_extractor
│   └── preprocessor_config.json
├── model_index.json
├── safety_checker
│   ├── config.json
│   └── pytorch_model.bin
├── scheduler
│   └── scheduler_config.json
├── text_encoder
│   ├── config.json
│   └── pytorch_model.bin
├── tokenizer
│   ├── merges.txt
│   ├── special_tokens_map.json
│   ├── tokenizer_config.json
│   └── vocab.json
├── unet
│   ├── config.json
│   ├── diffusion_pytorch_model.bin
└── vae
    ├── config.json
    ├── diffusion_pytorch_model.bin

可以查看组件的属性和配置:

pipeline.tokenizer
CLIPTokenizer(
    name_or_path="/root/.cache/huggingface/hub/models--runwayml--stable-diffusion-v1-5/snapshots/39593d5650112b4cc580433f6b0435385882d819/tokenizer",
    vocab_size=49408,
    model_max_length=77,
    is_fast=False,
    padding_side="right",
    truncation_side="right",
    special_tokens={
        "bos_token": AddedToken("<|startoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True),
        "eos_token": AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True),
        "unk_token": AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True),
        "pad_token": "<|endoftext|>",
    },
)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1160661.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【深度学习基础】从R-CNN到Fast R-CNN,再到MaskR-CNN,发展历程讲清楚!

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…

08-Docker-网络管理

Docker 在网络管理这块提供了多种的网络选择方式&#xff0c;他们分别是桥接网络、主机网络、覆盖网络、MACLAN 网络、无桥接网络、自定义网络。 1-无桥接网络&#xff08;None Network&#xff09; 当使用无桥接网络时&#xff0c;容器不会分配 IP 地址&#xff0c;也不会连…

【C++】set和multiset

文章目录 关联式容器键值对一、set介绍二、set的使用multiset 关联式容器 STL中的部分容器&#xff0c;比如&#xff1a;vector、list、deque、forward_list(C11)等&#xff0c;这些容器统称为序列式容器&#xff0c;因为其底层为线性序列的数据结构&#xff0c;里面存储的是元…

基于nodejs+vue高校实验室预约管理系统

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性&#xff1a;…

Android原生分享与指定app分享

什么是 Android 系统的原生分享呢&#xff0c;如下图所示 创建一个 Intent &#xff0c;指定其 Action 为 Intent.ACTION_SEND&#xff0c;这表示要创建一个发送指定内容的行动。 Intent sendIntent new Intent(); sendIntent.setAction(Intent.ACTION_SEND); 指定需要发送的…

量化交易Copula建模应对市场低迷

一、简介 传统上,我们依靠相关矩阵来理解资产间的动态。然而,正如过去的市场崩盘所表明的那样,当风暴袭来时,许多模型都会陷入混乱。突然之间,相关性似乎趋于一致,而多样化这一经常被吹捧的风险管理口号似乎并没有提供什么庇护。 这种出乎意料的同步,即资产在经济低迷时…

C++ Qt 学习(二):常用控件使用与界面布局

1. Qt 布局详解 ui 设计器设计界面很方便&#xff0c;为什么还要手写代码&#xff1f; 更好的控制布局更好的设置 qss代码复用 完全不会写 Qt 布局&#xff0c;很麻烦&#xff0c;怎么学会手写布局&#xff1f; 看 Qt 自己怎么写改良 Qt 的布局写法 1.1 水平布局 #include …

Android Studio的笔记--SerialPort串口通讯学习和使用

SerialPort串口通讯学习和使用 SerialPortandroid-serialport-api源码下载 Android-SerialPort-API源码下载readme版本 Android-SerialPort-Tool源码下载 Android-Serialport源码下载使用方法readme android中使用串口通信使用android-serialport-api方式第1种 链接第2种 导入S…

4.6 内部类

思维导图&#xff1a; 4.6 内部类 在Java中&#xff0c;可以在一个类的内部定义另一个类&#xff0c;这种结构的类被称作内部类&#xff0c;而包含它的类被称为外部类。根据内部类的位置、修饰符和定义方式&#xff0c;内部类可以分为以下四种&#xff1a; 成员内部类局部内…

Labview2018安装教程(超级详细)

网盘资源见文末 一 .简介 LabVIEW 2017是National Instruments&#xff08;NI&#xff09;开发的一款图形化编程环境。LabVIEW是一种流程导向的编程语言&#xff0c;它使用图形符号表示程序的逻辑和数据流&#xff0c;并且以数据流的方式执行程序&#xff0c;使得用户可以通过…

解决pycharm中,远程服务器上文件找不到的问题

一、问题描述 pycharm中&#xff0c;当我们连接到远程服务器上时。编译器中出现报错问题&#xff1a; cant open file /tmp/OV2IRamaar/test.py: [Errno 2] No such file or directory 第二节是原理解释&#xff0c;第三节是解决方法。 二、原理解释 实际上这是由于我们没有设置…

vue el-table-column 修改一整列的背景颜色

目录 修改表头以及一整列数据的背景颜色&#xff0c;效果如下&#xff1a; 总结 修改表头以及一整列数据的背景颜色&#xff0c;效果如下&#xff1a; 修改表头背景颜色&#xff1a;在el-table绑定header-cell-style 修改一整列的数据背景颜色&#xff1a;在el-table绑定:cel…

openGauss新功能:极致RTO回放支持备机读

极致RTO回放是openGauss提供的一种加速备机日志回放的高可用功能&#xff0c;能够做到支撑数据库主机重启后快速恢复&#xff0c;RTO < 10s。极致RTO功能是通过对物理日志回放建立多级流水线&#xff0c;将回放的并发度提高到页面级&#xff0c;来提升日志回放速度的。openG…

centos关闭Java进程的脚本

centos关闭Java进程的脚本&#xff0c;有时候服务就是个jar包&#xff0c;关闭程序又要找到进程ID&#xff0c;在kill掉&#xff0c;麻烦&#xff0c;这里就写了个脚本 小白教程&#xff0c;一看就会&#xff0c;一做就成。 1.脚本如下 #!/bin/bash ps -ef | grep java | gre…

执行npm install时老是安装不成功node-sass的原因和解决方案

相信你安装前端项目所需要的依赖包&#xff08;npm install 或 yarn install&#xff09;时&#xff0c;有可能会出现如下报错&#xff1a; D:\code\**project > yarn install ... [4/4] Building fresh packages... [-/6] ⠁ waiting... [-/6] ⠂ waiting... [-/6] ⠂ wai…

vue+element ui中的el-button自定义icon图标

实现 button的icon属性自定义一个图标名称&#xff0c;这个自定义的图标名称会默认添加到button下i标签的class上&#xff0c;我们只需要设置i标签的样式就可以了 ##3. 按钮上使用自定义的icon 完整代码 <div class"lookBtn"><el-button icon"el-icon-…

五种删除办公文件空白的方法

方法一:Shift键删除空白页 将光标定位在文档末尾,然后按住「Shift」键不松,鼠标单击选中空白页面,然后按下「Backspace或Delete」键即可删除空白页。 方法二:分页符删除空白页 有一些空白页,即便是使用了Shift键删除法也无法删除,那么这个时候就要看看是不是插入了分页…

vi vim 末尾编辑按GA 在最后一行下方新增一行编辑按Go

vim 快速跳到文件末尾 在最后一行下方新增一行 移到末尾,并且进入文本录入模式 GA (大写G大写A) 在一般模式(刚进入的模式,esc模式) GA 或 Shift ga 先 G 或 shiftg 到最后一行 然后 A 或 shifta 到本行末尾 并且进入文本录入模式 在最后一行下方新增一行 (光标换行,文字不…

06 # 手写 map 方法

map 的使用 map 自带循环功能&#xff0c;对数据中的元素进行加工&#xff0c;得到一个加工后的新数据 ele&#xff1a;表示数组中的每一个元素index&#xff1a;表示数据中元素的索引array&#xff1a;表示数组 <script>var arr [1, 3, 5, 7, 9];var result arr.ma…

使用Dockerfile生成docker自定义镜像

Dockerfile常用指令 • FROM 构建镜像基于哪个镜像 • MAINTAINER 镜像维护者姓名或邮箱地址 • RUN 构建镜像时运行的指令,执行一条RUN镜像就会叠加一层&#xff0c;因此RUN尽可能一条写完 • ADD 拷贝文件或目录到容器中&#xff0c;如果是URL或压缩包便会自动下载或自动解压…