机器学习---支持向量机的初步理解

news2024/11/27 13:42:23

1. SVM的经典解释

改编自支持向量机解释得很好 |字节大小生物学 (bytesizebio.net)

       话说,在遥远的从前,有一只贪玩爱搞破坏的妖怪阿布劫持了善良美丽的女主小美,智勇双全

的男主大壮挺身而出,大壮跟随阿布来到了妖怪的住处,于是,妖怪将两种能量球吐到了桌子上,

并要求大壮用他手里的棍子将两种能量球分开,如果大壮能赢得游戏,就成全他和小美。

大壮思索了片刻,就将他手里的棍子放了上去,正好将两种能量球分到不同阵营。

然后阿布胸有成竹的又吐出了新的球,恰巧有一个球在不属于他的阵营。

大壮将手里的棍子变粗,并试图通过在棍子两侧留出尽可能大的间隙来将棍子放在最佳位置。 

阿布气急败坏,将桌子上的能量球全部打乱顺序。

        大壮一时间想不出办法,阿布转身就要和小美去玩游戏,大壮很生气的拍了一下桌子,恍然

大悟,并将手里的棍子扔了出去。

 在阿布的眼中,棍子正好穿过了所有的能量球,并将其划分在不同的领域。

棍子也恰好打在了阿布的头上,大壮和小美幸福的生活在了一起。 

        经过后人的杜篡,将球写成了数据(data),将棍子写为了分类(classifier ),将最大间隙

写成了最优化(optimization)、将拍桌子描绘成核方法(kernelling),将桌子写为超平面

(hyperplane)。

2. SVM的算法定义

        SVM全称是supported vector machine(⽀持向量机),即寻找到⼀个超平⾯使样本分成两

类,并且间隔最大。 SVM能够执⾏线性或非线性分类、回归,甚⾄是异常值检测任务。它是机器

学习领域最受欢迎的模型之⼀。SVM特别适用于中小型复杂数据集的分类。

超平面最⼤间隔介绍:

        上左图显示了三种可能的线性分类器的决策边界:虚线所代表的模型表现非常糟糕,甚至都

⽆法正确实现分类。其余两个模型在这个训练集上表现堪称完美,但是它们的决策边界与实例过于

接近,导致在面对新实例时,表现可能不会太好。 右图中的实线代表SVM分类器的决策边界,不

仅分离了两个类别,且尽可能远离最近的训练实例。 

2.1 硬间隔

       在上面我们使用超平⾯进行分割数据的过程中,如果我们严格地让所有实例都不在最⼤间隔之

间,并且位于正确的⼀边,这就是硬间隔分类。 硬间隔分类有两个问题,⾸先,它只在数据是线

性可分离的时候才有效;其次,它对异常值非常敏感。

        当有⼀个额外异常值的鸢尾花数据:左图的数据根本找不出硬间隔,⽽右图最终显示的决策

边界与我们之前所看到的⽆异常值时的决策边界也⼤不相同,可能⽆法很好地泛化。

2.2 软间隔

        要避免这些问题,最好使⽤更灵活的模型。⽬标是尽可能在保持最⼤间隔宽阔和限制间隔违

例(即位于最⼤间隔之上, 甚⾄在错误的⼀边的实例)之间找到良好的平衡,这就是软间隔分

类。 要避免这些问题,最好使⽤更灵活的模型。⽬标是尽可能在保持间隔宽阔和限制间隔违例之

间找到良好的平衡,这就是软间隔分类。

       在Scikit-Learn的SVM类中,可以通过超参数C来控制这个平衡:C值越小,则间隔越宽,但是

间隔违例也会越多。上图显示了在⼀个非线性可分离数据集上,两个软间隔SVM分类器各自的决

策边界和间隔。 左边使用了高C值,分类器的错误样本(间隔违例)较少,但是间隔也较小。 右

边使用了低C值,间隔大了很多,但是位于间隔上的实例也更多。看起来第⼆个分类器的泛化效果

更好,因为⼤多数间隔违例实际上都位于决策边界正确的⼀边,所以即便是在该训练集上,它做出

的错误预测也会更少。 

3. SVM的损失函数

在SVM中,我们主要讨论三种损失函数:

绿色:0/1损失

        当正例的点落在y=0这个超平⾯的下边,说明是分类正确,⽆论距离超平⾯所远多近,误差都是0。

        当这个正例的样本点落在y=0的上方,说明分类错误,⽆论距离多远多近,误差都为1。 

        图像就是上图绿色线。

蓝色:SVM Hinge损失函数

        当⼀个正例点落在y=1的直线上,距离超平面长度1,那么1-ξ=1,ξ=0,也就是说误差为0。 

        当它落在距离超平面0.5的地方,1-ξ=0.5,ξ=0.5,也就是说误差为0.5。

        当它落在y=0上的时候,距离为0,1-ξ=0,ξ=1,误差为1。

        当这个点落在了y=0的上方,被误分到了负例中,距离算出来应该是负的,比如-0.5,那么1-

ξ=-0.5,ξ=1.5。误差为1.5。

        以此类推,画在⼆维坐标上就是上图中蓝色那根线了。

红色:Logistic损失函数

        损失函数的公式为:

        当y = 0时,损失等于ln2,这样线很难画,所以给这个损失函数除以ln2,这样到y = 0时,损

失为1,即损失函数过(0,1)点,即上图中的红色线。 

4. SVM的核方法

       核函数并不是SVM特有的,核函数可以和其他算法也进⾏结合,只是核函数与SVM结合的优

势非常⼤。核函数,是将原始输⼊空间映射到新的特征空间,从而,使得原本线性不可分的样本可

能在核空间可分。

       下图所示的两类数据,分别分布为两个圆圈的形状,这样的数据本身就是线性不可分的,此时

该如何把这两类数据分开呢? 

       假设X是输⼊空间, H是特征空间, 存在⼀个映射ϕ使得X中的点x能够计算得到H空间中的点

h, 对于所有的X中的点都成立:

若x,z是X空间中的点,函数k(x,z)满足下述条件,则称k为核函数,⽽ϕ为映射函数:

核方法案例1:

经过上⾯公式,具体变换过过程为:

核方法案例2:

       下⾯这张图位于第⼀、⼆象限内。我们关注红色的门,以及“北京四合院”这⼏个字和下面的紫

色的字母。 下⾯这张图位于第⼀、⼆象限内。我们关注红色的门,以及“北京四合院”这几个字和下

⾯的紫色的字母。

       绿色的平面可以完美地分割红色和紫色,两类数据在三维空间中变成线性可分的了。 三维中

的这个判决边界,再映射回⼆维空间中:是⼀条双曲线,它不是线性的。 核函数的作用就是⼀个

从低维空间到高维空间的映射,⽽这个映射可以把低维空间中线性不可分的两类点变成线性可分

的。

常见的核函数:

1.多项核中,d=1时,退化为线性核;

2.高斯核亦称为RBF核。 

线性核和多项式核:

        这两种核的作用也是⾸先在属性空间中找到⼀些点,把这些点当做base,核函数的作用就是

找与该点距离和角度满足某种关系的样本点。

        当样本点与该点的夹角近乎垂直时,两个样本的欧式长度必须非常长才能保证满足线性核函

数大于0;而当样本点与base点的方向相同时,长度就不必很长;而当方向相反时,核函数值就是

负的,被判为反类。即它在空间上划分出⼀个梭形,按照梭形来进⾏正反类划分。

RBF核:

          高斯核函数就是在属性空间中找到⼀些点,这些点可以是也可以不是样本点,把这些点当做

base,以这些 base 为圆心向外扩展,扩展半径即为带宽,即可划分数据。 换句话说,在属性空

间中找到⼀些超圆,⽤这些超圆来判定正反类。

Sigmoid核:

        同样地是定义⼀些base, 核函数就是将线性核函数经过⼀个tanh函数进⾏处理,把值域限制

在了-1到1上。 总之,都是在定义距离,⼤于该距离,判为正,小于该距离,判为负。至于选择哪

⼀种核函数,要根据具体的样本分布情况来确定。

⼀般有如下指导规则:

       1) 如果Feature的数量很大,甚至和样本数量差不多时,往往线性可分,这时选用LR或者线

性核Linear;

       2) 如果Feature的数量很小,样本数量正常,不算多也不算少,这时选用RBF核;

       3) 如果Feature的数量很小,而样本的数量很大,这时⼿动添加⼀些Feature,使得线性可

分,然后选用LR或者线性核Linear;

       4) 多项式核⼀般很少使用,效率不高,结果也不优于RBF;

       5) Linear核参数少,速度快;RBF核参数多,分类结果⾮常依赖于参数,需要交叉验证或网

格搜索最佳参数,⽐较耗时;

       6)应用最⼴的应该就是RBF核,⽆论是小样本还是⼤样本,高维还是低维等情况,RBF核函

数均适用。

 

 

 

 

 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1160567.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

程序员使用 ChatGPT的 10 种最佳方式

自2022年11月30日发布以来,ChatGPT持续爆火,它在各个方面都产生了巨大的影响力,在软件开发行业,ChatGPT 有潜力彻底改变我们思考和处理软件开发的方式。 ChatGPT 正在改变软件开发流程,它理解自然语言和生成类人文本的…

【AI视野·今日NLP 自然语言处理论文速览 第六十一期】Tue, 24 Oct 2023

AI视野今日CS.NLP 自然语言处理论文速览 Tue, 24 Oct 2023 (showing first 100 of 207 entries) Totally 100 papers 👉上期速览✈更多精彩请移步主页 Daily Computation and Language Papers LINC: A Neurosymbolic Approach for Logical Reasoning by Combining …

Cesium笔记(1):Vite+Vue3搭建Cesium

创建项目 ViteVue3创建一个vue的项目 npm create vitelatest进入项目文件, 安装依赖 npm install运行项目npm run dev, cesium 开始引入我们的cesium 安装插件 npm i cesium vite-plugin-cesium vite -D添加配置文件 需要安装 vite-plugin-cesium&#xff…

antv/g6 节点、及自定义节点

节点 AntV G6 中内置节点支持的通用属性通常包括以下几个: id:节点的唯一标识符。 x 和 y:节点的位置坐标。 label:节点的标签文本。 style:节点的样式,用于设置节点的外观,可以包括填充颜色…

有色金属冶炼VR虚拟场景互动教学有何优势

真实模拟:VR虚拟现实技术可以提供一个真实的虚拟环境,模拟钢铁制造现场,包括设备、工艺流程、操作规程等,使学员获得直观、真实的体验。 安全可靠:钢铁制造技能培训可以在虚拟环境中进行,不会对人员或设备造…

LeetCode | 876. 链表的中间结点

LeetCode | 876. 链表的中间结点 OJ链接 我们这里有一个很好的思路,我们定义两个变量,第一个变量走两步,第二个变量走一步,一直循环,当第一个变量走到最后的时候停下来,这个时候第二个变量就是中间的那个…

谷歌AlphaFold模型迎来重大突破!可以预测生物分子、配体

11月1日,谷歌旗下的AI研究机构DeepMind在官网发布了,蛋白质结构预测模型 AlphaFold的最新技术进展:已显著提升了预测准确性,并将覆盖范围从蛋白质扩展至其他生物分子,包括配体(小分子)。 据悉&…

Midjourney干货篇 - 与AI对话,如何写好prompt

文章目录 1、语法2、单词3、要学习prompt 框架4、善用参数(注意版本)5、善用模版6、临摹7、垫图 木匠不会因为电动工具的出现而被淘汰,反而善用工具的木匠,收入更高了。 想要驾驭好Midjourney,可以从以下方面出发调整&…

回归预测 | Matlab实现SO-CNN-SVM蛇群算法优化卷积神经网络-支持向量机的多输入单输出回归预测

Matlab实现SO-CNN-SVM蛇群算法优化卷积神经网络-支持向量机的多输入单输出回归预测 目录 Matlab实现SO-CNN-SVM蛇群算法优化卷积神经网络-支持向量机的多输入单输出回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.SO-CNN-SVM蛇群算法优化卷积神经网络-支持向量…

树形结构数据展示及返回上一级

11月1日&#xff0c;又是搬砖的一天&#xff0c;让我们红尘作伴&#xff0c;活的潇潇洒洒。。。。。。 html <template><view class"content"><view><input class"sreachTool" v-model"toolValue"/><van-icon name…

java项目之医院病历管理系统(ssm框架)

项目简介 医院病历管理系统实现了以下功能&#xff1a; 管理员&#xff1a;个人中心、医院公告管理、用户管理、科室信息管理、医生管理、出诊信息管理、预约时间段管理、预约挂号管理、门诊病历管理、就诊评价管理、系统管理。医生&#xff1a;个人中心、出诊信息管理、预约…

sw 怎么装新版本

我们在安装solidworks时&#xff0c;有时候会提示A newer version of this applic ation is already installed. Installation stopped.如下图所示 这时候需要点继续安装 然后会出现下图所示情况&#xff0c;vba7.1安装未成功 这是因为我们电脑中以前安装过更高版本的solidw…

服务器数据恢复—EMC存储pool上数据卷被误删的数据恢复案例

服务器数据恢复环境&#xff1a; EMC Unity某型号存储&#xff0c;连接了2台硬盘柜。2台硬盘柜上创建2组互相独立的POOL&#xff0c;2组POOL共有21块520字节硬盘。21块硬盘组建了2组RAID6&#xff0c;1号RAID6有11块硬盘. 2号RAID6有10块硬盘。 服务器故障&检测&#xff1…

SDL Passolo 2022.0.135 Crack

SDL Passolo是一款非常专业的本地化工具。它能够满足软件本地化和游戏行业的特定需求&#xff0c;可以显着加快本地化流程并提高输出质量&#xff0c;简化软件本地化&#xff0c;加快翻译流程&#xff0c;高效翻译图形用户界面&#xff0c;SDL Passolo的是一个特定的软件本地化…

Vue3问题:如何实现级联菜单的数据懒加载?

前端功能问题系列文章&#xff0c;点击上方合集↑ 序言 大家好&#xff0c;我是大澈&#xff01; 本文约3100字&#xff0c;整篇阅读大约需要5分钟。 本文主要内容分三部分&#xff0c;第一部分是需求分析&#xff0c;第二部分是实现步骤&#xff0c;第三部分是问题详解。 …

太阳能技术相关

0 Preface/Foreword Energy Harvesting&#xff1a;猎能技术 太阳能光电/光伏&#xff1a;PhotoVoltaic 热电&#xff1a;Thermoelectric LoRa Alliance&#xff1a;支持物联网&#xff08;IoT&#xff09;低功耗广域网&#xff08;LPWAN&#xff09;开放LoRaWAN标准的全球…

如何提高滚柱导轨的精度?

滚柱导轨是一种高精度的传动零部件&#xff0c;起导向作用&#xff0c;如果滚柱导轨的精度受损&#xff0c;则无法达到预期的使用效果&#xff0c;那么&#xff0c;我们应该如何提高滚柱导轨的精度呢&#xff1f; 1、优化材料选型&#xff1a;选用高质量的材料作为制造导轨的原…

分析每月开销曲线图,合理记账助您掌控支出趋势!

亲爱的用户&#xff0c;您是否曾经为不知道自己每月开销的情况而感到困惑&#xff1f;现在&#xff0c;我们为您提供了一款智能记账工具&#xff0c;通过分析每月开销曲线图&#xff0c;帮助您合理记账&#xff0c;掌控支出趋势&#xff01; 首先&#xff0c;第一步&#xff0…

本地仓库转为git仓库推送到gitee

通常有两种获取 Git 项目仓库的方式&#xff1a; 方式一&#xff1a;将尚未进行版本控制的本地目录转换为 Git 仓库&#xff1b; 方式二&#xff1a;从其它服务器 克隆 一个已存在的 Git 仓库。 两种方式都会在你的本地机器上得到一个工作就绪的 Git 仓库。 方式一&#xff1a…

10.31同步异步清零,阻塞与非阻塞例子,ROM,RAM,边沿检测实现

同步与异步清零 就是当复位信号发生变化&#xff0c;从1到0时立刻进行复位&#xff0c;negedge触发模块&#xff0c;即可工作&#xff1b;但如果到0后一直没有发生变化&#xff0c;即保持为0&#xff0c;那么就是在不断的时钟上升沿触发电路&#xff0c;但是都会因为复位信号为…